مدلسازی و تخمین نیروی باالبرنده وارد بر سدهای وزنی با استفاده از روشهای المان محدود و شبکه عصبی مصنوعی بهینه شده با الگوریتم وال

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکترای گروه آب تبریز

2 Tabriz University, Agricultural faculty, Irrigation department

3 گروه علوم و مهندسی آب، دانشگاه تبریز،

چکیده

شناخت صحیح نیروی بالابرنده نقش مهمی در تحلیل پایداری سدهای وزنی دارد. لذا تخمین آن با روش‌های دقیق بسیار حائز اهمیت می‌باشد. بدین منظور یک مدل عددی از پی سد وزنی در گاوانگژو چین، به روش المان محدود انجام گرفت و بعد از شبیه سازی، مقادیر نیروی بالابرنده در موقعیت‌های مختلف قرارگیری زهکش حاصل گردید. نیاز به تخصص، زمان بر بودن محاسبات و تعیین دقیق شرایط اولیه مسئله در مدل های عددی سبب گردیده است که گرایش به استفاده از مدل‌های هوشمند گسترش پیدا کند. بدین منظور علاوه بر مدل شبکه عصبی مصنوعی مرسوم ANN با 4 نرون ورودی، یک لایه پنهان (دارای 8 نرون) و یک نرون خروجی، یک مدل جدید هیبریدی عصبی مصنوعی و الگوریتم بهینه سازی وال، ANN-WOA ،توسعه داده شد. نسبت پارامترهای فاصله ردیف زهکش از بالادست، فاصله مرکز به مرکز زهکش ها از هم، قطر زهکش ها و سطح آب بالادست مخزن سد به عرض کف سد به عنوان ورودی و نیروی بالابرنده نسبی به عنوان خروجی مد نظر قرار گرفتند. نتایج تحقیق نشان داد مدل هیبریدی با R2 و RE %به ترتیب برابر با 0/998 ،0/021 و 3/50 % نسبت به مقادیر مدل شبکه عصبی مصنوعی مقادیر RMSE، به ترتیب برابر 0/995 ، 0/0261 و 4/67 % از قابلیت بالائی در تخمین نیروی بالابرنده برخوردار می‌باشد. همچنین نمودارهای چگالی داده ها و دیاگرام ویلن نشان داد که پراکندگی و توزیع احتمال داده‌های تخمینی با مدل هیبریدی با داده‌های حاصل از شبیه سازی عددی تطابق بسیار نزدیک و مشابهی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling and Estimating the Uplift Force of Gravity Dams Using Finite Element and Artificial Neural Network Whale Optimization Algorithm Methods

نویسندگان [English]

  • Bahram Nourani 1
  • Farzin Salmasi 2
  • Mohammad Ali Ghorbani 3
1 candidated phd
3 Department of Water Engineering, Faculty of Agriculture
چکیده [English]

The correct identification of the uplift force plays an important role in the stability analysis of gravity dams. Therefore, it is very important to estimate it accurately. For this purpose, a numerical model of the foundation of a gravity dam of the Guangzhao, China was made using finite element method. After simulation, the uplift force values were obtained in different positions of drainage. Require experience, the timing of calculations and the accurate determination of the boundary conditions in numerical models, have caused to the development of the tendency to use intelligent models. For this purpose, in addition to the Artificial Neural Network model (ANN) with three-layer that consists of 4 input neurons, 1 hidden layer (with 8 neurons), and 1 output neurons, a new hybrid model of Artificial Neural Network-Whale Optimization Algorithm (ANN-WOA), was developed. The ratio of the parameters of the distance of the drain row from upstream dam, the distance from the center to center of drains, the drain diameter and the water surface upstream of the reservoir dam respect to the width of the dam foundation as input and relative uplift force were considered as output. The values of R2 , RMSE and RE% for the ANN-WOA model, were 0.998, 0.021 and 3.3%, respectively, and for the ANN model were 0.995, 0.261 and 4.67% respectively, that indicate the higher accuracy of the ANN-WOA model in the estimation of the uplift force than the ANN. In addition, the density plot box and the violin plot indicate that the point density and the probability distribution estimated data with the ANN-WOA model is very similar to that the data obtained from the numerical simulation compared with the ANN model.

کلیدواژه‌ها [English]

  • gravity dam
  • Uplift force
  • finite element method
  • Hybrid artificial neural network-whale optimization algorith
[1]R.S. Varshney, Concrete Dams, Oxford and IBH Publishing CO. New Delhi, 1982.
[2]A.S. Chawla, M. Nathi, Uplift pressures on hollow gravity dams, Hydraulics Division, ASCE, 273-257 (1979) (3)105.
[3]R.K. Ransford, Uplift Computations for Masonry Dams, in, La Houille Blanche, 1972.
[4]A.S. Chawla, R. Thakur, K. Akhleash, , Optimum location of drain in concrete dams, Energy Engineering, ASCE, 1990( (7)(16).
[5]A.S. Chawla, A. Kumar, Average Uplift Computations for hollow gravity dams, Hydraulic Engineering, ASCE, 466-455 (1985) (3)108.
[6]A.E. Mohamed, M.A. Magdy, Optimum Position of Drainage Gallery underneath Gravity Dam, in:  Sixth International Water Technology Conference, IWTC, Alexandria, Egypt, 2001.
[7]B. Melvandi, , Investigating the behavior of deep drainage in reducing lifting force in concrete concrete weights by solving three-dimensional drainage equation, in:  6th Iranian Hydraulic Conference, Shahrekord Iran 2007.
[8]S. Nejati, Numerical simulation of relief wells in downstream of embankment dams, University of Tabriz agriculture faculty, 2014.
[9]H. Khalili Shayan, E. Amiri Takledani, A. Yeganeh, Laboratory and Numerical Evaluation of Estimating Effective Inflatable Force Effects on Deviant Dams, in:
3rd National Conference on Irrigation and Drainage Networks Management, Shahid Chamran University of Ahvaz, Ahwaz, 2010.
[10]R.I. Nasr, B.A. Zeydan, M.F. Bakhry, M.S. Saloom, Uplift pressure relief on lined canals using tile drains, Alexandria Engineering 507-497 (2003) (4)42.
[11]Y. Chen, C. Zhou, H. Zheng, A numerical solution to seepage problems with complex drainage systems, Computers and Geotechnics, .393-383 (2008) 35
[12]B. Nourani, F. Salmasi, A. Abbaspour, B. Oghati, Numerical investigation of the optimum location for vertical drains in gravity dams, Geotechnical and Geological Engineering, 808-799 (2016) (2)35.
[13]F. Salmasi, R. Khatibi, B. Nourani, Investigating reduction of uplift forces by longitudinal drains with underlined canals, ISH Journal of Hydraulic Engineering, 91-81 (2017) (1)24.
[14]Dehghani, G.H. Montazeri, F. Nasiri, M. Ghodsian, Using genetic algorithm and artificial neural network in optimizing deights Dams, Special Issue of Civil Engineering, 112-99 (2006) 25.
[15]Komakpanah, S. Bakhtiari, Use of neural network in the design of python injections, Special Issue of Civil Engineering .98-91 (2009) 35
[16]H.R. Saba, M. Mohsen Kamalian, I. Raeisizadeh, Determining Impending Slip of Slop and Optimized Embankment Operation Volume of Earth Dams Using a Combination of Neural Networks and Genetic Algorithms (GA), Amirkabir Journal of Civil Engineering, (4)50 754-747 (2018).
[17]T. Honar, S. Pourhamzeh, A neural network model to predict characteristics of Hydraulic Jump in Stilling Basins with Convergent Wall, Water and  soil science, 109-99 (2012) (2)23.
[18]Eskandariyan, Effect of previous rainfall in river flow estimation by rainfall-runoff intelligent modeling, in: Proceedings of the 8th International Congress on Civil Engineering, Shiraz 2008.
[19]M. Nasri, R. Modarres, M. Guidance, Application of neural network model in runoff estimation (Case Study: Plassajan Basin), Quarterly Journal of Environment, (5)2 37-23 (2009).
[20]Anonymous, Geo-Studio,Version 8.15.11236, User Manual. GEOSLOPE International, Calgary, in, Alberta, Canada, 2012.
[21]R. Lippman, An ntroduction to computing with neural nets, IEEE ASSP Mag, in, 22-4 (1987) (2)4.
[22]Aljarah, H. Faris, S. Mirjalili, Optimizing connection weights in neural networks using the whale optimization algorithm, Soft Computing, 15-1 (2016) (1)22.