[1] R.L. Hardy, Multiquadric equations of topography and other irregular surfaces, Journal of geophysical research,79(8)(1971)1905-1915.
[2] R.L. Hardy, Theory and applications of the multiquadricbiharmonic method 20 years of discovery 1968–1988, Computers & Mathematics with Applications, 19(8-9) (1990) 163-208.
[3] Y.-C. Hon, K.F. Cheung, X.-Z. Mao, E.J. Kansa, Multiquadric solution for shallow water equations, Journal of Hydraulic Engineering, 125(5) (1999) 524-533.
[4] S. Wong, Y. Hon, T. Li, A meshless multilayer model for a coastal system by radial basis functions, Computers & Mathematics with Applications, 43(3-5) (2002) 585-605.
[5] R. Hardy, Hardy's multiquadric-biharmonic method for gravity field predictions II, Computers & Mathematics with Applications, 41(7-8) (2001) 1043-1048.
[6] D. Young, S. Jane, C. Lin, C. Chiu, K. Chen, Solutions of 2D and 3D Stokes laws using multiquadrics method, Engineering analysis with boundary elements, 28(10) (2004) 1233-1243.
[7] F. Gao, C. Chi, Numerical solution of nonlinear Burgers’ equation using high accuracy multi-quadric quasiinterpolation, Applied Mathematics and Computation, 229 (2014) 414-421.
[8] W. Bao, Y. Song, Multiquadric quasi‐interpolation methods for solving partial differential algebraic equations, Numerical Methods for Partial Differential Equations, 30(1) (2014) 95-119.
[9] Z. Wu, S. Zhang, Conservative multiquadric quasiinterpolation method for Hamiltonian wave equations, Engineering Analysis with Boundary Elements, 37(7-8) (2013) 1052-1058.
[10] S. Patel, A. Rastogi, Meshfree multiquadric solution for real field large heterogeneous aquifer system, Water Resources Management, 31(9) (2017) 2869-2884.
[11] N. Li, H. Su, D. Gui, X. Feng, Multiquadric RBFFD method for the convection-dominated diffusion problems base on Shishkin nodes, International Journal of Heat and Mass Transfer, 118 (2018) 734-745.
[12] E.J. Kansa, Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—II solutions to parabolic, hyperbolic and elliptic partial differential equations, Computers & mathematics with applications, 19(8-9) (1990) 147-161.
[13] E. Kansa, R. Carlson, Improved accuracy of multiquadric interpolation using variable shape parameters, Computers & Mathematics with Applications, 24(12) (1992) 99-120.
[14] S.A. Sarra, Integrated multiquadric radial basis function approximation methods, Computers & Mathematics with Applications, 51(8) (2006) 1283-1296.
[15] C.-S. Huang, C.-F. Lee, A.-D. Cheng, Error estimate, optimal shape factor, and high precision computation of multiquadric collocation method, Engineering Analysis with Boundary Elements, 31(7) (2007) 614-623.
[16] A.-D. Cheng, Multiquadric and its shape parameter—a numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation, Engineering analysis with boundary elements, 36(2) (2012) 220-239.
[17] C.-S. Huang, H.-D. Yen, A.-D. Cheng, On the increasingly flat radial basis function and optimal shape parameter for the solution of elliptic PDEs, Engineering analysis with boundary elements, 34(9) (2010) 802-809.
[18] S. Xiang, K.-m. Wang, Y.-t. Ai, Y.-d. Sha, H. Shi, Trigonometric variable shape parameter and exponent strategy for generalized multiquadric radial basis function approximation, Applied Mathematical Modelling, 36(5) (2012) 1931-1938.
[19] M. Esmaeilbeigi, M. Hosseini, A new approach based on the genetic algorithm for finding a good shape parameter in solving partial differential equations by Kansa’s method, Applied Mathematics and Computation, 249 (2014) 419-428.
[20] S. Rippa, An algorithm for selecting a good value for the parameter c in radial basis function interpolation, Advances in Computational Mathematics, 11(2-3) (1999) 193-210.
[21] M. Uddin, On the selection of a good value of shape parameter in solving time-dependent partial differential equations using RBF approximation method, Applied Mathematical Modelling, 38(1) (2014) 135-144.
[22] J. Biazar, M. Hosami, Selection of an Interval for Variable Shape Parameter in Approximation by Radial Basis Functions, Advances in Numerical Analysis, (2016).
[23] W. Chen, Y. Hong, J. Lin, The sample solution approach for determination of the optimal shape parameter in the Multiquadric function of the Kansa method, Computers & Mathematics with Applications, 75(8) (2018) 2942-2954.
[24] H.R. Azarboni, M. Keyanpour, M. Yaghouti, Leave-TwoOut Cross Validation to optimal shape parameter in radial basis functions, Engineering Analysis with Boundary Elements, 100 (2019) 204-210.
[25] A. Fallah, E. Jabbari, R. Babaee, Development of the Kansa method for solving seepage problems using a new algorithm for the shape parameter optimization, Computers & Mathematics with Applications, 77(3) (2019) 815-829.
[26] E. Kansa, A strictly conservative spatial approximation scheme for the governing engineering and physics equations over irregular regions and inhomogeneously scattered nodes, Computers & Mathematics with Applications, 24(5-6) (1992) 169-190.
[27] E. Jabbari, R. Ghiassi, Three-dimensional steady state seepage, a finite volume approach, WIT Transactions on Ecology and the Environment, 52 (2002).
[28] P.-O. Persson, G. Strang, A simple mesh generator in MATLAB, SIAM review, 46(2) (2004) 329-345.
[29] D.P. Hardin, T. Michaels, E.B. Saff, A Comparison of Popular Point Configurations on $\mathbb {S}^ 2$, arXiv preprint arXiv:1607.04590, (2016).
[30] M. Caliari, S. De Marchi, M. Vianello, Padua2D: Lagrange interpolation at Padua points on bivariate domains, ACM Trans. Math. Software, (2008) 35-33.