اثر بازشو و سخت‌کننده بر رفتار دینامیکی غیرخطی هندسی پوسته‌های تک‌انحنایی FGM تحت بارهای انفجاری

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد عمران گرایش سازه، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران.

2 Civil Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad,Mashhad, Iran

3 کارشناس ارشد عمران گرایش سازه، دانشکده مهندسی، دانشگاه فردوسی مشهد، مشهد، ایران

چکیده

مواد هدفمند (FGM )گونه‌ای از مواد مرکب هستند که به واسطه‌ی پیوستگی ترکیب مواد تشکیل‌دهنده، خواص مکانیکی مؤثرتری نسبت به مواد مرکب چندلایه دارا می‌باشند که این مهم، منجر به از بین رفتن تمرکز تنش بین لایه‌ای می‌شود. بیشترین کاربرد این مواد در سازه‌های جدار نازک نظیر صفحه‌ها و پوسته‌ها می‌باشد. یکی از مؤثرترین عوامل تغییر رفتار این گونه سازه‌ها به‌ویژه پوسته‌های تک انحنایی، بارهای حرارتی و ضربه‌ای ناشی از انفجار می‌باشد که این چالش سبب رفتار دینامیکی غیرخطی آنها می‌گردد. همچنین به دلیل بعضی مسایل اجرایی، ایجاد بازشو در پوسته‌ها و تغییر رفتار آنها در برابر بارهای انفجاری مسأله‌ای مهم و پیشنهاد برای حل آن ضرورت می‌یابد. از این رو، به منظور بهبود مقاومت و کاهش مقدار بیشینه‌ی تغییرمکان، بهره‌گیری از پوسته‌های هدفمند و استفاده از سخت‌کننده‌های مناسب، توصیه می‌گردد. در این پژوهش، با استفاده از نرم‌افزار Abaqus ،به ارزیابی تأثیر انواع بازشو و سخت‌کننده بر روی رفتار دینامیکی پوسته‌های تک‌انحنایی FGM تحت بارهای انفجاری پرداخته شده است. برای این کار، اثر شاخص توان حجمی، اثر انواع بازشو و سخت‌کننده مورد بررسی قرار گرفته است. نتایج حاصل از این پژوهش نشان می‌دهد که با افزایش شاخص توان حجمی مقدار بیشینه‌ی تغییرمکان پوسته کاهش پیدا کرده است. ایجاد بازشو در مرکز پوسته عملکرد بهتری در مقایسه با ایجاد بازشوی گسترده در سطح پوسته داشته است. با افزایش لنگر لختی سخت‌کننده‌های طولی و حلقوی مقدار بیشینه‌ی تغییرمکان کاهش یافته است. همچنین، با استفاده‌ی توأم از بازشوی گسترده و سخت‌کننده‌های طولی می‌توان مقدار بیشینه‌ی تغییرمکان پوسته را تا حد زیادی کاهش داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Effect of Opening and Stiffener on Geometric Nonlinear Dynamical Behavior of Single-Curved FGM Shells under the Blast Loads

نویسندگان [English]

  • Mojtaba Shahraki 1
  • farzad shahabian 2
  • reza jome manzari 3
1 Civil Structural Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad.
2 Civil Engineering Department, Faculty of Engineering, Ferdowsi University of Mashhad,Mashhad, Iran
3 Master of Civil Structural Engineering, Faculty of Engineering, Ferdowsi University of Mashhad, Mashhad, Iran
چکیده [English]

Functionally Graded Materials (FGMs) are kinds of composite materials that due to the continuity of mixture of constituent materials, have more effective mechanical properties which leads to eliminate the interlayer stress concentration. The most common usage of such materials is in thin-wall structures, such as plates and shells. One of the most effective factors in behavior of such structures especially in single-curved shells, thermal loads or Impact loads is caused by explosion. Also, due to some executive needs, make opening in shells and their behavioral changes are important and suggesting solution will be necessary. Therefore, in order to prevent large displacement and resistance improvement, using shells made of FGM and suitable stiffeners, will be suggested. In this study, ABAQUS finite element software has been used to survey the Effect of opening and stiffener on geometric nonlinear dynamical behavior of single-curved FGM shells under the blast loads. In order to do this, the effect of volume fraction index, the effect of different openings and stiffeners has been studied. Results show that by increasing the volume fraction index, the maximum amount of displacement of the shell decreased. Making opening in the center of the shells, has better function in contrast with making opening distribution in the level of shells. By increasing moment of inertia of longitudinal and circular stiffeners, the maximum displacement has been decreased. Also, by utilizing opening distribution and longitudinal stiffeners, the maximum amount of displacement can be reduced.

کلیدواژه‌ها [English]

  • FGM Shells
  • Volume Fraction Index
  • Blast Loads
  • Opening
  • Stiffener
[1]    H. Yin, L. Sun, and G. H. Paulino, “Micromechanicsbased elastic model for functionally graded materials with particle interactions”, Acta Materialia, vol. 52, no. 12, pp. 3535-3543, 2004.
[2]    G. Li, B. Z. Chen, X. F. Deng, and R. Eckhoff, “Explosion resistance of a square plate with a square hole”, in Journal de Physique IV (Proceedings), vol. 12, no. 7, pp. 121-124, EDP Sciences 2002.
[3]    D. Y. Gao, “Nonconvex semi-linear problems and canonical duality solutions”, in Advances in Mechanics and Mathematics, pp. 261-312, Springer, Boston, MA, .3002
[4]    L. Qian, R. Batra, and L. Chen, “Analysis of cylindrical bending thermoelastic deformations of functionally graded plates by a meshless local Petrov–Galerkin method”, Computational Mechanics, vol. 33, no. 4, pp.263-273 : 2004.
[5]    M. Bever and P. Duwez, “Gradients in composite materials”, Materials Science and Engineering, vol. 10, pp. 1-8, 1972.
[6]    M. Koizumi, The concept of FGM. 1993.
[7]    C. Horgan and A. Chan, “The pressurized hollow cylinder or disk problem for functionally graded isotropic linearly elastic materials”, Journal of Elasticity, vol. 55, no. 1, pp. 43-59, 1999.
[8]    N. Tutuncu and M. Ozturk, “Exact solutions for stresses in functionally graded pressure vessels”, Composites Part B: Engineering, vol. 32, no. 8, pp. 683-686, 2001.
[9]    R. Naghdabadi and S. H. Kordkheili, “A finite element formulation for analysis of functionally graded plates and shells”, Archive of Applied Mechanics, vol. 74, no. 5-6, pp. 375-386, 2005.
[10] Z. Shi, T. Zhang, and H. Xiang, “Exact solutions of heterogeneous elastic hollow cylinders”, Composite Structures, vol. 79, no. 1, pp. 140-147, 2007.
[11] G. Nurick and J. Martin, “Deformation of thin plates subjected to impulsive loading a review part II: experimental studies”, International Journal of Impact Engineering, vol. 8, no. 2, pp. 171-186, 1989.
[12] S. C. K. Yuen and G. Nurick, “Experimental and numerical studies on the response of quadrangular stiffened plates. Part I: subjected to uniform blast load”, International Journal of Impact Engineering, vol. 31, no. 1, pp. 55-83, 2005.
[13] A. Esmaeel Khosravi, F. Shahabian and Y. Nouri, “ The behavior of the composite multi-layer cylindrical shells subjected to blast load”, Journal of Structural and Construction Engineering, [online] vol. 4, pages 26-34, 2017, (in Persian).
[14] G. Schleyer, N. Underwood, H. Do, J. Paik, and B. Kim, “On pulse pressure loading of plates with holes”, Open Engineering, vol. 2, no. 4, pp. 496-508, 2012.
[15] P. Laura, R. Gutierrez, L. Ercoli, J. Utjest, and R. Carnicer, “Free vibrations of rectangular plates elastically restrained against rotation with circular or square free openings”, Ocean Engineering, vol. 14, no.4, pp. 285-293, 1987.
[16] H. Xu, J. Du, and W. Li, “Vibrations of rectangular plates reinforced by any number of beams of arbitrary lengths and placement angles”, Journal of Sound and Vibration, vol. 329, no. 18, pp. 3759-3779, 2010.
[17] H. Türkmen and Z. Mecitoğlu, “Dynamic response of a stiffened laminated composite plate subjected to blast load”, Journal of Sound and Vibration, vol. 221, no. 3, pp. 371-389, 1999.
[18] R. Jome Manzari and F. Shahabian, “The Geometrically nonlinear dynamic response of metalceramic FGM plates under the blast loading”, Journal of Structural and Construction Engineering, [online] vol. 5, pages 16, 2018, (in Persian).
[19] E. Kumari and M. Singha, “Nonlinear Response of Laminated Panels under Blast Load”, Procedia Engineering, vol. 173, pp. 539-546, 2017.
[20] J. N. Reddy, Mechanics of laminated composite plates and shells: theory and analysis. CRC press, 2004.
[21] X. L. Huang and H. S. Shen, “Nonlinear vibration and dynamic response of functionally graded plates in thermal environments”, International Journal of Solids and Structures, vol. 41, no. 9, pp. 2403-2427, 2004.
[22] H. S. Shen, Functionally graded materials: nonlinear analysis of plates and shells. CRC press, 2016.
[23] T. Bangash, Explosion-resistant buildings: design, analysis, and case studies. Springer Science and Business Media, 2006.
[24] G. F. Kinney and K. J. Graham, Explosive shocks in air. Springer Science and Business Media, 2013.
[25] D. O. Dusenberry, Handbook for blast resistant design of buildings. John Wiley and Sons, 2010.
[26] Abaqus Analysis User’s Manual Version 6.14. Dassault Systemes Simulia Crop.: Providence, RI, USA, 2016.
[27] C. Aksoylar, A. Ömercikoğlu, Z. Mecitoğlu, and M. H. Omurtag, “Nonlinear transient analysis of FGM and FML plates under blast loads by experimental and mixed FE methods”, Composite Structures, vol. 94, no. 2, pp. 731-744, 2012.
[28] R. Gunes, M. Aydin, M. K. Apalak, and J. Reddy, “The elasto-plastic impact analysis of functionally graded circular plates under low-velocities”, Composite Structures, vol. 93, no. 2, pp. 860-869, 2011.
[29] A. Hajlaoui, E. Triki, A. Frikha, M. Wali, and F. Dammak, “Nonlinear dynamics analysis of FGM shell structures with a higher order shear strain enhanced solid-shell element”, Latin American Journal of Solids and Structures, vol. 14, no. 1, pp. 72-91, 2017.
[30] Neuberger, S. Peles, and D. Rittel, “Scaling the response of circular plates subjected to large and close-range spherical explosions. Part I: Air-blast loading”, International Journal of Impact Engineering, vol. 34, no. 5, pp. 859-873, 2007.