تحلیل خطر لرزه ای احتمالاتی با استفاده از الگوریتم لنگر دوم – مرتبه اول برای تهران و حومه

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه عمران؛ دانشگاه صنعتی شاهرود

2 دانشگاه شمال، آمل، ایران

چکیده

یکی از پرخسارت‌ترین حوادث طبیعی، زمین‌لرزه است که فرآیند تصادفی آن پیش‌بینی و یا پیشگیری وقوع را در شرایط حاضر ناممکن کرده است. ولی امروزه کاهش خسارات زمین‌لرزه‌ها با مطالعات تحلیل خطر لرزهای ممکن شده است. ایران از مناطقی است که همواره در معرض آسیب این پدیده طبیعی قرارگرفته است. اما تجربه بسیاری از کشورهای مشابه ایران که در معرض زمین‌لرزه‌های متعدد قرار دارند، ولی تلفات و خساراتی به مراتب کمتر را متحمل می‌شوند، نشان داده است که با مطالعات بروز زمین‌لرزه‌ها و بهره‌گیری از این مطالعات در احداث سازه‌ها می‌توان خسارات ناشی از زمین‌لرزه‌ها را کاهش داد. تحلیل خطر لرزهای نیازمند داده‌های زلزله است، که هرچه این اطلاعات بروزتر باشند، نتایج حاصل نیز با دقت بیشتری حاصل خواهند شد. از اساسی‌ترین داده‌هایی که نیازمند به‌روزرسانی هستند، بزرگای زمین‌لرزه‌ها، محل وقوع زمین‌لرزه‌ها، ژرفای کانونی و... با دقت کافی می‌باشد. این پارامترها در برآورد تحلیل خطر زمین‌لرزه احتمالاتی در مناطق مختلف نقش اساسی دارند. این تحقیق تهران را به‌عنوان پایتخت و پرجمعیت‌ترین شهر ایران به‌عنوان منطقه مطالعاتی خود در نظر گرفته است. پژوهش حاضر دربرگیرنده سابقه بیش از 300 زمین‌لرزه در 117 سال گذشته برای تهران و اطراف آن می‌باشد. هدف تحقیق حاضر ارزیابی خطر لرزه‌ای احتمالاتی جدید به وسیله الگوریتم لنگردوم-مرتبه اول با استفاده از عدم قطعیت بر روی چهار رابطه کاهندگی با وزن یکسان است. همچنین با توجه به سطوح لرزه‌ای برای طراحی و استاندارد 2800 ایران، پژوهش حاضر بیشینه شتاب زمین‌لرزه را در دو سطح مورد بررسی قرار داده است. زلزله مبنای طرح 1 ،زلزله‌ای با احتمال فراگذشت 10 %در50 سال )دوره بازگشت 475 ساله( که در عمر مفید سازه رخ می‌دهد و همچنین زلزله مبنای طرح 2 ،زلزله‌ای با احتمال فراگذشت 2 %در50 سال )دوره بازگشت 2475 ساله( که احتمال رخ‌دادن آن در عمر مفید سازه محتمل می‌باشد. نتایج این پژوهش مبین آن است که بیشینه شتاب زمین‌لرزه به ترتیب اعداد g0/30061 و0/55666g برای دو سطح فوق طبق الگوریتم لنگردوم-مرتبه اول است و همچنین استاندارد 2800 ایران در این زمینه محافظه کارانه‌تر عمل کرده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Probabilistic Seismic Hazard Analysis for Tehran and Suburbs by Using of First Order Second Moment Algorithm

نویسندگان [English]

  • mohammad Shamekhi amiri 1
  • khalil mansouri seresht 2
1 Assistant Professor of Civil Engineering; Shahrood University of Technology
2 Shomal University, Amol, Iran
چکیده [English]

One of the most damaging natural disasters is an earthquake which random process of its motions has made predicting and preventing its occurrence impossible, but it is possible to reduce the probable damages caused by earthquakes through probabilistic seismic hazard studies. Iran is one the countries that always has been exposed to the damages of this natural phenomenon. The experiments of many countries that are at high risk of earthquakes, has shown that damages can be reduced when seismic hazard analysis is achieved in structural design process. Seismic hazard analysis requires the earthquake data and obviously more accurate data can lead to results with more precision. The magnitude, location and focal depth of the earthquakes are the most basic data that needs to be updated carefully. These parameters have a major role in the estimation of the probabilistic seismic hazard analysis in the different regions. The city of Tehran which is the capital and the most populous city of Iran was chosen as our study area. The current research includes a history of more than 300 earthquakes in the past 117 years, which has been analyzed for Tehran and its suburbs with the aim of conducting a new FOSM (First Order Second Moment) algorithm. In this method, four ground motion relationships with the same weight were also used. Based on given design seismic levels and the Iranian Standard No.2800, the present study had the PGA in two levels. The first level which is, Design Basis Earthquake (DBE) defines the peak horizontal accelerations with 10% probability of exceedance in 50 years that was expected to occur once in approximately 475 years. The second is Maximum Considered Earthquake (MCE) that defines the peak horizontal accelerations with 2% probability of exceedance in 50 years which was expected to occur once in approximately 2,475 years. According to the FOSM algorithm, the estimated PGA for both levels was 0.30061 g and 0.55666 g, respectively.

کلیدواژه‌ها [English]

  • FOSM algorithms
  • Probability seismic hazard
  • Annual rate for earthquake
  • Design base
  • Return Period
[1]M. Hashemi, A.A. Alesheikh, M.R. Zolfaghari, A spatio-temporal model for probabilistic seismic hazard zonation of Tehran, Computers & geosciences, 58 (2013) 8-18.
[2] J. Wang, Y.-M. Wu, A new seismic hazard analysis using FOSM algorithms, Soil Dynamics and Earthquake Engineering, 67 (2014) 251-256.
[3] G.G. Amiri, H. Razeghi, A. Kazemi, Seismic hazard assessment of Metropolitan Tehran by using deterministic attenuation and epicentral distribution, International Journal of Earth Sciences and Engineering, 4(6) (2011) 200-203.
[4] G.G. Amiri, G. Abdollahzadeh, S.A.R. Amrei, Near field earthquake effects on Iranian design basis acceleration for Tehran, in:  13th World Conference on Earthquake Engineering, Vancouver, August, 2004, pp. 1-6.
[5] J.J. Bommer, Uncertainty about the uncertainty in seismic hazard analysis, Engineering Geology, 70(12) (2003) 165-168.
[6] G.G. Amiri, H. Mahmoodi, S.R. Amrei, Probabilistic Seismic Hazard Assessment of Tehran Based on Arias Intensity, International Journal of EngineeringTransactions B: Applications, 23(1) (2009) 1-20.
[7] J.-P. Wang, H. Kuo-Chen, On the use of AFOSM to estimate major earthquake probabilities in Taiwan, Natural Hazards, 75(3) (2015) 2577-2587.
[8] J. Wang, X. Yun, Y.-M. Wu, A first-order secondmoment calculation for seismic hazard assessment with the consideration of uncertain magnitude conversion, Natural Hazards and Earth System Sciences, 13(10) (2013) 2649-2657.
[9] S.L. Kramer, Geotechnical earthquake engineering. In prentice–Hall international series in civil engineering and engineering mechanics, PrenticeHall, New Jersey,  (1996).
[10] E. Boostan, N. Tahernia, A. Shafiee, Fuzzy— probabilistic seismic hazard assessment, case study: Tehran region, Iran, Natural Hazards, 77(2) (2015) .145-525
[11] A.H.-S. Ang, W.H. Tang, Probability concepts in engineering: emphasis on applications in civil & environmental engineering, Wiley New York, 2007.
[12] W. Gibson, Probabilistic methods for slope analysis and design, Australian Geomechanics, 46(3) (2011) 29.
[13] B.-C. Kim, K.F. Reinschmidt, A second moment approach to probabilistic IRR using Taylor series, The Engineering Economist, 57(1) (2012) 1-19.
[14] J. Douglas, Ground motion prediction equations 1964–2016, report, Accessible on http://www. gmpe. org. uk/gmpereport2014. pdf,  (2016).
[15]  ATTENUATION  RELATIONSHIPS  FOR PEAK GROUND ACCELERA-TION IN THE IRANIAN PLATEAU USING GENE EXPRESSION PROGRAMMING (GEP), (2014) (4,1)   85-95 .مهندسی عمران
[16] M. Zare, M. Ghafory-Ashtiany, P. Bard, Attenuation law for the strong-motions in Iran, in:  Proceedings of the third international conference on seismology and earthquake engineering, 1999, pp. 345-354.
[17] J. Douglas, Ground-motion prediction equations 1964-2010, Pacific Earthquake Engineering Research Center Berkeley, CA, 2011.
[18] K. Campbell, N.Y. BOZORG, Near-source attenuation of peak horizontal acceleration from worldwide accelerograms recorded from 1957 to 1993, in, PROCESSING OF US NATIONAL CONFERENCE ON EARTHQUAKE ENGINEERING, EARTHQUAKE ENGINEERING RESEARCH, 1994.
[19] S. Akkar, J.J. Bommer, Prediction of elastic displacement response spectra in Europe and the Middle East, Earthquake Engineering & Structural Dynamics, 36(10) (2007) 1275-1301.