[1]M. Rezaei, M. Nahtani, A. Abkar, M. Rezaei, M. Mirkazehi Rigi, The survey of the efficiency of SDSM for predicting temperature parameters in two dry and superhero climates (Case study: Kerman and Bam). , Watershed Management Research, (2013) 117-131.
[2]R. Le Roux, M. Katurji, P. Zawar-Reza, H. Quénol, A. Sturman, Comparison of statistical and dynamical downscaling results from the WRF model, Environmental Modelling & Software, 100 (2018) 67-73.
[3]B. Timbal, Z. Li, E. Fernandez, The Bureau of meteorology statistical downscaling model graphical user interface:
user manual and software documentation, Citeseer, 2008.
[4]R.L. Wilby, C.W. Dawson, E.M. Barrow, SDSM—a decision support tool for the assessment of regional climate change impacts, Environmental Modelling & Software, 17(2) (2002) 145-157.
[5]P. Almasi, S. Soltani, Assessment of the climate change impacts on flood frequency (case study: Bazoft Basin, Iran), Stochastic Environmental Research and Risk Assessment, 31(5) (2017) 1171-1182.
[6]K. Goubanova, V. Echevin, B. Dewitte, F. Codron, K. Takahashi, P. Terray, M. Vrac, Statistical downscaling of sea-surface wind over the Peru–Chile upwelling region: diagnosing the impact of climate change from the IPSLCM4 model, Climate Dynamics, 36(7-8) (2011) 13651378.
[7]J. Liu, S. Chen, L. Li, J. Li, Statistical Downscaling and Projection of Future Air Temperature Changes in Yunnan Province, China, Advances in Meteorology, 2017 (2017).
[8]A. Anandhi, V. Srinivas, D.N. Kumar, R.S. Nanjundiah, Role of predictors in downscaling surface temperature to river basin in India for IPCC SRES scenarios using support vector machine, International Journal of Climatology: A Journal of the Royal Meteorological Society, 29(4) (2009) 583-603.
[9]J.T. Schoof, S. Pryor, Downscaling temperature and precipitation: A comparison of regression-based methods and artificial neural networks, International Journal of Climatology, 21(7) (2001) 773-790.
[10]M. Devak, C. Dhanya, A. Gosain, Dynamic coupling of support vector machine and K-nearest neighbour for downscaling daily rainfall, Journal of Hydrology, 525 (2015) 286-301.
[11]R. Chadwick, E. Coppola, F. Giorgi, An artificial neural network technique for downscaling GCM outputs to RCM spatial scale, Nonlinear Processes in Geophysics, 18(6) (2011).
[12]H. Mahsafar, R. MAKNOUN, B. Saghafian, The impact of climate change on Urmia Lake water level, Iran-Water Resources Research, 7 (2011) 47-58.
[13]G.P. Zhang, Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, 50 (2003) 159-175.
[14]A. Mishra, V. Desai, V. Singh, Drought forecasting using a hybrid stochastic and neural network model, Journal of Hydrologic Engineering, 12(6) (2007) 626-638.
[15]V. Nourani, Ö. Kisi, M. Komasi, Two hybrid artificial intelligence approaches for modeling rainfall–runoff process, Journal of Hydrology, 402(1-2) (2011) 41-59.
[16]M.R. Najafi, H. Moradkhani, S.A. Wherry, Statistical downscaling of precipitation using machine learning with optimal predictor selection, Journal of Hydrologic Engineering, 16(8) (2010) 650-664.
[17]R. Haji Hosseini, J. Yazdi, S. Golian, Downscaling GCMs by Artificial Neural Network (ANN). , in: Iran's second national irrigation and drainage congress., 2016.
[18]Z. Razzaghzadeh, V. Nourani, ANN based statistical downscaling of GCM model for prediction of hydroclimatic parameters (Case study: Tabriz City). , in:
16th Iranian Hydraulic Conference, 2017.
[19]V. Nourani, A.H. Baghanam, J. Adamowski, O. Kisi, Applications of hybrid wavelet–Artificial Intelligence models in hydrology: A review, Journal of Hydrology, 514 (2014) 358-377.
[20]V. Nourani, M.T. Sattari, A. Molajou, Threshold-based hybrid data mining method for long-term maximum precipitation forecasting, Water Resources Management, .8562-5462 )7102( )9(13
[21]Z. Alihosseini, nvestigation and Analysis of Wind Effects on Wind Climate Features Case Study: East Azarbaijan Province, M.Se thesis, Tabriz university, 2010.
[22]J. Guo, H. Chen, C.-Y. Xu, S. Guo, J. Guo, Prediction of variability of precipitation in the Yangtze River Basin under the climate change conditions based on automated statistical downscaling, Stochastic Environmental Research and Risk Assessment, 26(2) (2012) 157-176.
[23]S. Beecham, M. Rashid, R.K. Chowdhury, Statistical downscaling of multi-site daily rainfall in a South Australian catchment using a Generalized Linear Model, International journal of climatology, 34(14) (2014) 36543670.
[24]P.R. Tiwari, S. Kar, U. Mohanty, S. Kumari, P. Sinha, A. Nair, S. Dey, Skill of precipitation prediction with GCMs over north India during winter season, International Journal of Climatology, 34(12) (2014) 3440-3455.
[25]R.L. Wilby, S. Charles, E. Zorita, B. Timbal, P. Whetton, L. Mearns, Guidelines for use of climate scenarios developed from statistical downscaling methods, Supporting material of the Intergovernmental Panel on Climate Change, available from the DDC of IPCC TGCIA, 27 (2004) -.
[26]S.-T. Chen, P.-S. Yu, Y.-H. Tang, Statistical downscaling of daily precipitation using support vector machines and multivariate analysis, Journal of hydrology, 385(1-4) (2010) 13-22.
[27]C.E. Shannon, A mathematical theory of communications I and II. , Bell LABs Technical Journal, 27 (1948) 379-423.
[28]V.P. Singh, Hydrologic synthesis using entropy theory, Journal of Hydrologic Engineering, 16(5) (2011) 421-433.
[29]H.H. Yang, S. Van Vuuren, S. Sharma, H. Hermansky, Relevance of time–frequency features for phonetic and speaker-channel classification, Speech communication, 31(1) (2000) 35-50.
[30]Z. Gao, B. Gu, J. Lin, Monomodal image registration using mutual information based methods, Image and Vision Computing, 26(2) (2008) 164-173.
[31]E. Frank, Y. Wang, S. Inglis, G. Holmes, I.H. Witten, Using model trees for classification, Machine learning, .67-36 )8991( )1(23
[32]J.R. Quinlan, Learning with continuous classes, in: 5th Australian joint conference on artificial intelligence, World Scientific, 1992, pp. 343-348.
[33]M. Pal, S. Deswal, M5 model tree based modelling of reference evapotranspiration, Hydrological Processes: An International Journal, 23(10) (2009) 1437-1443.
[34]H.R. Maier, G.C. Dandy, Neural networks for the prediction and forecasting of water resources variables: a review of modelling issues and applications, Environmental modelling & software, 15(1) (2000) 101-124. [35] S. Haykin, Neural networks (Computer science), MacMillan College Publishing Co, New York, 1994.
[36]J.-S. Jang, ANFIS: adaptive-network-based fuzzy inference system, IEEE transactions on systems, man, and cybernetics, 23(3) (1993) 665-685.
[37]J.-S.R. Jang, C.-T. Sun, E. Mizutani, Neuro-fuzzy and soft computing; a computational approach to learning and machine intelligence, Prentice Hall, 1997.
[38]E. Sharghi, V. Nourani, N. Behfar, Earthfill dam seepage analysis using ensemble artificial intelligence based modeling, Journal of Hydroinformatics, 20(5) (2018) 1071-1084.
[39]D.R. Legates, G.J. McCabe Jr, Evaluating the use of “goodness of fit” measures in hydrologic and hydroclimatic model validation, Water resources research, 35(1) (1999) 233-241.
[40]V. Nourani, M. Komasi, A. Mano, A multivariate ANNwavelet approach for rainfall–runoff modeling, Water resources management, 23(14) (2009) 2877.
[41]O. Kisi, Evapotranspiration modelling from climatic data using a neural computing technique, Hydrological Processes: An International Journal, 21(14) (2007) 19251934.
[42]Z. Levin, W.R. Cotton, Aerosol pollution impact on precipitation: a scientific review, Springer Science & Business Media, 2008.
[43]A. Gholampour, R. Nabizadeh, S. Naseri, M. Yunesian,
H. Taghipour, N. Rastkari, S. Nazmara, S. Faridi, A.H. Mahvi, Exposure and health impacts of outdoor particulate matter in two urban and industrialized area of Tabriz, Iran, Journal of Environmental Health Science and Engineering, 12(1) (2014) 27.
[44]H. Sanikhani, Y. Dinpajoh, S. Pour Yusef, S.Z. Ghavidel, B. Solati, The Impacts of Climate Change on Runoff in Watersheds (Case Study: Ajichay Watershed in East Azerbaijan Province, Iran), Journal of Water and Soil, 27(6) (2014) 1225-1234.
[45]N. Toorini, M.R. Hesami kermani, Climate Change Prediction Using Nero Fuzzy (Case Study:Tehran and Tabriz Stations), Sharif Journal of Civil Engineering, 30(1) (2014) 139-147.