Experiments on the Instability of Loose Sandy Slopes Due to Rise in Water Level

Document Type : Research Article

Authors

1 M.Sc Student, Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran

2 Assistant Professor, Department of Civil and Environmental Engineering, Amirkabir University of Technology, Tehran, Iran

Abstract

In a soil mass, a rise in pore water pressure leads to a decrease in the mean effective normal stresses, while the vertical loads due to surcharge may experience small changes. Under such loading, very loose and loose sands may initially experience small volumetric expansion, and then start to contract significantly as failure is approached. These large contractions can lead to the increase in pore water pressure and, consequently, failure of the soil mass under poor drainage conditions. In this paper, an experimental model is used to examine slope instability resulting from rise in water level. It was noticed that the main factor controlling the mode of failure was initial density, but other factors such as method of increase in pore pressure, distribution of pore pressure, and geometry of the test tank also influenced failures.

Keywords


[1]عزیزی، آرش ، ”مطالعه آزمایشگاهی و مدلسازی رفتار خاک های دانه ای تحت بارگذاری با تنش تفاضلی ثابت “ ، پایان نامه کارشناسی ارشد، دانشگاه صنعتی . امیرکبیر، 1388
[2]خجسته رحیمی، امیر ، ” ابزارگذاری و آزمایش ناپایداری شیب های ماسه ای غیر متراکم در اثر بالا آمدن سطح آب “ ، پایان نامه کارشناسی ارشد، دانشگاه صنعتی . امیرکبیر، 1390
[3]معصومی فرد، وحید ، ”طراحی و ساخت مدل آزمایشگاهی برای بررسی ناپایداری شیب در اثر بالا آمدن سطح آب “ ، پایان نامه کارشناسی ارشد، دانشگاه . صنعتی امیرکبیر، 1390
[4]Anderson, S. A. and Riemer, M. F. ,“Collapse of Saturated Soil Due to Reduction in Confinement”, Journal of Geotechnical Engineering, ASCE, 121(2): 216-219, 1995.
[5]Skopek, P. 1993. ,“Collapse of dry sand”, Canadian Geotechnical Journal 31, 1008-1014, 1994.
[6]Azizi, A. and Imam, S. M. R. ,“Behavior of sands in constant deviatoric stress loading in Prediction and Simulation Methods for Geohazard Mitigation”, ed. Oka and Kimoto. Published by Taylor and Francis Group. ISBN 978-0-415-80482-0, 2008.
[7]Eckersley, J. D. ,“Instrumented laboratory flow slides”, Geotechnique 40, No. 3, 489-502, 1990.