شبیه سازی حالت بحرانی خاک دانه‌ای با دانه های چندگوشه به کمک روش اجزای مجزا

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی عمران، دانشکده مهندسی، دانشگاه فردوسی مشهد

چکیده

از روش اجزای مجزا برای شبیه‌سازی دو بعدی رفتار زه‌کشی‌شده و زه کشی‌نشده در مصالح دانه‌ای چندگوشه به منظور یافتن خط حالت بحرانی استفاده شده است. برای شبیه‌سازی رفتار زه‌کشی‌نشده، ازدو روش حجم ثابت و استوانه بهره گرفته شده است.در روش حجم ثابت فرض می‌شودکه حجم نمونه خاک با فرض تراکم ناپذیری آب در روند بارگذاری ثابت می‌ماند. ولی در روش استوانه، لوله‌ای میان حفره‌های همسایه در نظر گرفته می‌شودکه امکان تبادل آببین مرکز حفره‌های همسایه را فراهم می‌نماید.در این روش، قطراستوانه نماینده‌ای از نفوذپذیری خاک است. شبیه‌سازی رفتار زه‌کشی‌نشده محیط‌های دانه‌ای به کمک هردو روش برای نمونه دانه‌ای، تحت تنش همه‌جانبه 200 کیلوپاسکال انجام شد. نتایج شبیه‌سازی‌ها نشان داد که پاسخ‌های حاصل از روش استوانه انطباق خوبی با روش حجم ثابت دارد و با افزایش سختی آب، نتایج هر دو روش بهم نزدیک‌تر می‌شوند. همچنین اثر سطح تنش همه‌جانبه بر رفتار زه‌کشی‌شده و رفتار زه‌کشی‌نشده به دو روش حجم ثابت و استوانه موردبررسی قرارگرفت. نتایج حاصل ازهر سه دسته از شبیه‌سازی‌ها نشان دادکه با افزایش تنش همه‌جانبه، تنش انحرافی و تمایل به تراکم در نمونه‌های زه‌کشی‌شده و زه‌کشی‌نشده افزایش می‌یابد. به منظور دستیابی به حالت بحرانی، تحلیل‌ها تاکرنش‌های بزرگ وتا ثابت شدن تنش انحرافی ونسبت تخلخل ادامه یافت. سپس موقعیت خط حالت بحرانی وهمچنین پارامترهای آن تعیین شد. نتایج نشان داد که موقعیت خط حالت بحرانی به مسیر تنش بارگذاری بستگی نداردو روش شبیه‌سازی در موقعیت خط حالت بحرانی تأثیربسیارکمی دارد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Simulation of Critical State Behavior of Granular Soils with Polygonal Particles Using Discrete Element Method (DEM)

نویسندگان [English]

  • Masoud Khabazian
  • Ehsan Seyedi Hosseininia
Faculty of Engineering, Ferdowsi University of Mashhad
چکیده [English]

In this study, the numerical Discrete Element Method (DEM) was applied for simulating both drained and undrained behavior of granular materials with two-dimensional polygonal particles in order to find a critical state line. For undrained behavior simulation, two methods including constant volume and cylinder methods were utilized. In the constant volume method, it was assumed that the volume of the soil remains constant during the loading due to the incompressibility of water. In the cylinder method, however, a pipe was considered among adjacent pores that provide the water transformation between them. In other words, the transmission of water among the voids can be taken into account. An undrained simulation was performed for sandy samples at the confining pressure of 200 kPa by both methods. Simulations showed that the results obtained by the cylinder method have good conformity with those of the constant volume method. A parametric study on the water compressibility was done. As the water becomes less compressible, i.e., stiffer, the stress-strain paths of both methods become closer. Also, the effect of confining pressure on the drained and undrained behavior by constant volume and cylinder methods was investigated. The results of the simulations showed that by increasing the confining pressure, the deviatoric stress and the contraction tendency increase in drained and undrained simulations. To achieve a critical state in the soil samples, the simulations were performed with a large strain level where both deviatoric stress and void ratio become constant. Then the critical state line locus, as well as its parameters, are determined. The results show that the critical state line locus does not depend on the stress path. Furthermore, the simulation method for the undrained condition has very little impact on the critical state line locus.

کلیدواژه‌ها [English]

  • Polygonal particles
  • cylinder method
  • discrete element method (DEM)
  • critical state line
  • Drained and undrained simulations
[1]  Castro.G., "Liquefaction of Sands", Harvard Univ, Cambridge, (1969)
[2]  Castro.G., “Liquefaction and cyclic mobility”, ASCE J Geotech Eng, 101 (1975) 551-569.
[3]  K. Been, M.G. Jefferies, “A state parameter for sands”, Geotechnique, 35 (1985) 99-112.
[4]  k. Been, M.G. Jefferies, J. Hachey, “The critical state of sands”, Geotechnique, 41(3) (1991) 365-381.
[5]  X. Gu, M. Huang, J. Qian, “DEM investigation on the evolution of microstructure in granular soils under shearing”, Granular Matter, 16 (2014) 91-106.
[6]  T.G. Sitharam, J.S. Vinod, “Critical state behaviour of granular materials from isotropic and rebounded paths: DEM simulations”, Granular Matter, 11 (2009) 33-42.
[7]  Bahadori H, Ghalandarzadeh A, T. I., “Effect of non plastic silt on the anisotropic behavior of sand”, Soils and Foundations, 48 (2008) 531-545.
[8]  Rahman MM, Lo SR, B. MAL., “Equivalent granular state parameter and undrained behavior of sand-fines mixtures”, Acta geotechnica, 6 (2011) 183–194.
[9]  A. Lashkari, “On the modeling of the state dependency of granular soils”, Computers and Geotechnics, 36 (2009) 1237-1245.
[10] A. Lashkari, A. Karimi, K. Fakharian, F. KavianiHamedani, ”Prediction of undrained behavior of isotropically and anisotropically consolidated Firoozkuh sand: instability and flow liquefaction”, ASCE International Journal of Geomechanics, 17(10) (2017) 04017083.
[11] A. Ayoubian, "Triaxial testing on very loose sands for flow liquefaction analyses", Univ. of Alberta, Edmonton, Alta, (1996).
[12] X.S. Li, Y. Wang, “Linear representation of steadystate line for sand”, Journal of Geotechnical and Geoenvironmental Engineering, 124 (1998).
[13] A. Mohammadi, A. Qadimi, “Characterizing the process of liquefaction initiation in Anzali shore sand through critical state soil mechanics”, Soil Dynamics and Earthquake Engineering, 77 (2015) 152-163.
[14] K. Farahmand, A. Lashkari, G. A, “Firoozkuh Sand: Introduction of a Benchmark for Geomechanical Studies”, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 40 (2016) 133-148.
[15] T.T. Ng, “Discrete element method simulations of the critical state of a granular material”, International Journal of Geomechanics, 9 (2009) 209-216.
[16] F. Vahidi-Nia, A. Lashkari, S.M. Binesh, “An insight into the mechanical behavior of binary granular soils”, Particuology, 21 (2015) 82-89.
[17] G.-C. Cho, J. Dodds, C. Santamarina, “Particle shape effects on packing density, stiffness and strength: Natural and crushed sands”, Journal of Geotechnical and Geoenvironmental Engineering, 132(5) (2006) 591-602.
[18] A. Tsomokos, V.A. Georgiannoua, “Effect of grain shape and angularity on the undrained response of fine sands”, Canadian Geotechnical Journal, 47 (2010) 539-551.
[19] A. Borhani, K. Fakharian, “Effect of Particle Shape on Dilative Behavior and Stress Path Characteristics of Chamkhaleh Sand in Undrained Triaxial Tests”, International journal of civil engineering, 14 (2016) 197-208.
[20] J. Yang, X.D. Luo, “Exploring the relationship between critical state and particle shape for granular materials”, Journal of the Mechanics and Physics of Solids, 84 (2015) 196-213.
[21]  N. Fatin, R. Matthew, N. Vasiliki, “Effect of particle shape on the mechanical behavior of natural sands”, Journal of Geotechnical and Geoenvironmental Engineering, 142 (2016).
[22]  Y.H. Xie, Z.X. Yang, D. Barreto, M.D. Jiang, “The influence of particle geometry and the intermediate stress ratio on the shear behavior of granular materials”, Granular Matter,  (2017) 19-35.
[23]  P.A. Cundall, “A computer model for simulating progressive large scale movements in blocky rock system”, in:  In proc. Of Symposium of the international Society for Rock Mechanics, France, 1971.
[24]  P.A. Cundall, O.D.L. Strack, “A discrete numerical model for granular assemblies”, Geotechnique, 29(1) (1979) 47-65.
[25]  A.A. Mirghasemi, L. Rothenburg, E.L. Matyas, “Numerical simulation of assemblies of twodimensional polygon-shaped particles and effects of confining pressure on shear strength”, Solid Sand Foundation, 37(3) (1997) 43-52.
[26]  S. Abedi, A.A. Mirghasemi, “Particle shape consideration in numerical simulation of assemblies of irregularly shaped particles”, Particuology,  (2011) 387-397.
[27] E. Seyedi hoseininia, A.A. Mirghasemi, “Effect of particle breakage on the behavior of simulated angular particle assemblies”, China Particuology, 5(5) (2007) 328-336.
[28]  E. Seyedi hoseininia, A.A. Mirghasemi, “Numerical simulation of breakage of two-dimensional polygonshaped particles using discrete element method”, Powder Technology, 166(2) (2006) 100-112.
[29] E. Seyedi hoseininia, “Investigating the micromechanical evolutions within inherently anisotropic granular materials using discrete element method”, Granular Matter, 14 (2012) 483-503.
[30] E. Seyedi hoseininia, “Discrete element modeling of inherently anisotropic granular assemblies with polygonal particles”, Particuology, 10 (2012) 542-552.
[31] E. Seyedi hoseininia, “Stress–force–fabric relationship for planar granular materials”, Ge´otechnique, 10 (2013) 830-841.
[32] E. Seyedi hoseininia, “A micromechanical study on the stress rotation in granular materials due to fabric evolution”, Powder Technology, 283 (2015) 462-474.
[33] R. Dorby, T.-T. NG, “Discrete Modelling of StressStrain Behavior of Granular Media at Small and Large Strains”, Engineering Computations, 9 (1992) 129-143.
[34] P. Dubujet, F. Dedecker, “Micro-mechanical analysis and modelling of granular materials loaded at constant volume”, Granular Matter, 1 (1998) 129-136.
[35] G. Gong, "DEM Simulations of Drained and Undrained Behavior", The University of Birmingham, (2008).
[36] T.G. Sitharam, S.V. Dinesh, “Numerical simulation of liquefaction behaviour of granular materials using Discrete Element Method”, Earth Planet Science, 112(3) (2003) 479-484.
[37] J. Katagiri, T. Matsushima, Y. Yamada, “Simple shear simulation of 3D irregularly-shaped particles by image-based DEM”, Granular Matter, 12 (2010) 491497.
[38] J. Zhao, N. Guo, “Signature of Anisotropy in Liquefiable Sand Under Undrained Shear”, Advances in Bifurcation and Degradation in Geomaterials, (2011).
[39] A. Soroush, B. Ferdowsi, “Three dimensional discrete element modeling of granular media under cyclic constant volume loading: A micromechanical perspective”, Powder Technology, 212 (2011) 1-16.
[40] G. Gong, X. Zha, “DEM simulation of liquefaction for cohesionless media at grain scale”, Journal of Central South University, 19 (2012) 2643–2649.
[41] G. Gong, “DEM Simulations of Granular Soils under Undrained Triaxial Compression and Plane Strain”, Journal of Applied Mathematics and Physics, 3 (2015)1003-1009 .
[42]  U. El Shamy, M. Zeghal, “Coupled ContinuumDiscrete Model for Saturated Granular Soils”, Journal of Engineering Mechanics, 131(4) (2005).
[43] M. Zeghal, U. El Shamy, “Liquefaction of saturated loose and cemented granular soils”, Powder Technology, 184 (2008) 254–265.
[44] G. Liu, G. Rong, J. Peng, C. Zhou, “Numerical simulation on undrained triaxial behavior of saturated soil by a fluid coupled-DEM model”, Engineering Geology, 193 (2015) 256-266.
[45]  R. Shafipour, A. Soroush, “Fluid coupled-DEM modelling of undrained behavior of granular media”, Computers and Geotechnics, 35 (2008) 673-685.
[46]  Y. Khalili, A. Mahbobi, “Discrete simulation and micromechanical analysis of two-dimensional saturated granular media”, Particuology, 15 (2014) 138-150.
[47]  L. Rothenburg, E.L. Matyas, “Statistical aspects of flow in a random network of channels”, Stochastic Hydrology and Hydraulics, 1 (1987) 217-240.
[48]  S. Thallak, "Numerical simulation of hydraulic fracturing in granular media", PhD thesis, University of Waterloo, (1991).
[49]  O.R.R. Bonilla, "Numerical Simulations of Undrained Granular Media", University of Waterloo, (2004).
[50]   M. Khabazian, E. Seyedi hoseininia, "Numerical simulation of undrained behavior of granular material with polygonal particles by discrete element method (DEM)", Modares Civil Engineering journal, (In Persian) (2018).
[51] J. Pfitzner, “Poiseuille and his law”, Anaesthesia, 31 (1976) 273-275.
[52] A. D4767, "Standard Test Method for Consolidated Undrained Triaxial Compression Test for Cohesive Soils", in, American Society for Testing and Materials, (2011).
[53] A. D6528-07, "Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Cohesive Soils", in, American Society for Testing and Materials, (2007).
[54] L. Zhang, “The behavior of granular material in pure shear,direct shear and simple shear”, Aston University, (2003).
[55] T. Sitharam, “Discrete element modelling of cyclic behaviour of granular materials”, Geotechnical and Geological Engineering 21 (2003) 297-329.
[56] G. Gong, X. Zha, “DEM simulation of undrained behaviour with preshearing history for saturated granular media”, Modelling Simul. Mater. Sci, 21 (2013) 1-12.
[57]  X. Zhao, T.M. Evans, “Numerical analysis of critical state behaviors of granular soils under different loading conditions”, Granul Matter, 13(6) (2011) 751-764.
[58]  Y.-J. Liu, G. Li, Z.-Y. Yin, C. Dano, P. Hicher, X. Xia, J. Wang, “Influence of grading on the undrained behavior of granular materials”, C. R. Mecanique, 342 (2014) 85-95.
[59] R.P. Chapuis, “Predicting the saturated hydraulic conductivity of sand and gravel using effective diameter and void ratio”, Canadian geotechnical journal, 41 (2004) 787-795.
[60]  D. Wang, X. Fu, Y. Jie, W. Jie Dong, D. Hu, “Simulation of pipe progression in a levee foundation with coupled seepage and pipe flow domains”, Soil and Foundations, 54(5) (2014) 974-984.
[61] O. Babak, J. Resnick, “On the Use of Particle-SizeDistribution Data for Permeability Prediction”, SPE Reservoir Evaluation & Engineering, 19(1) (2016).