[1] R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non- spherical stars, Monthly notices of the royal astronomical society, 181(3) (1977) 375-389.
[2] E. Daly, S. Grimaldi, H.H. Bui, Explicit incompressible SPH algorithm for free-surface flow modelling: A comparison with weakly compressible schemes, Advances in water resources, 97 (2016) 156-167.
[3] M. Fleming, Y. Chu, B. Moran, T. Belytschko, Enriched element‐free Galerkin methods for crack tip fields, International journal for numerical methods in engineering, 40(8) (1997) 1483-1504.
[4] T. Belytschko, Y.Y. Lu, L. Gu, Element‐free Galerkin methods, International journal for numerical methods in engineering, 37(2) (1994) 229-256.
[5] S.N. Atluri, T. Zhu, A new meshless local Petrov- Galerkin (MLPG) approach in computational mechanics, Computational Mechanics, 22(2) (1998) 117-127.
[6] C.A. Duarte, J.T. Oden, An hp adaptive method using clouds, Computer Methods in Applied Mechanics and Engineering, 139(1-4) (1996) 237-262.
[7] E. Onate, S. Idelsohn, O. Zienkiewicz, R. Taylor, C. Sacco, A stabilized finite point method for analysis of fluid mechanics problems, Computer Methods in Applied Mechanics and Engineering, 139(1-4) (1996) 315-346.
[8] W.K. Liu, S. Jun, Y.F. Zhang, Reproducing kernel particle methods, International journal for numerical methods in fluids, 20(8‐9) (1995) 1081-1106.
[9] K. Kiani, A nonlocal meshless solution for flexural vibrations of double-walled carbon nanotubes, Applied Mathematics and Computation, 234 (2014) 557-578.
[10] K. Kiani, A meshless approach for free transverse vibration of embedded single-walled nanotubes with arbitrary boundary conditions accounting for nonlocal effect, International Journal of Mechanical Sciences, 52(10) (2010) 1343-1356.
[11] T. Zhu, J.-D. Zhang, S. Atluri, A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach, Computational Mechanics, 21(3) (1998) 223-235.
[12] G.-R. Liu, Meshfree methods: moving beyond the finite element method, CRC press, 2009.
[13] S. Koshizuka, Y. Oka, Moving-particle semi-implicit method for fragmentation of incompressible fluid, Nuclear science and engineering, 123(3) (1996) 421- 434.
[14] B. Ataie-Ashtiani, L. Farhadi, A stable moving- particle semi-implicit method for free surface flows, Fluid dynamics research, 38(4) (2006) 241.
[15] H. Arzani, M. Afshar, Solving Poisson’s equations by the discrete least square meshless method, WIT Transactions on Modelling and Simulation, 42 (2006) 23-31.
[16] M. Afshar, M. Naisipour, J. Amani, Node moving adaptive refinement strategy for planar elasticity problems using discrete least squares meshless method, Finite Elements in Analysis and Design, 47(12) (2011) 1315-1325.
[17] G. Shobeyri, M. Afshar, Simulating free surface problems using discrete least squares meshless method, Computers & Fluids, 39(3) (2010) 461-470.
[18] A.R. Firoozjaee, M.H. Afshar, Discrete least squares meshless method with sampling points for the solution of elliptic partial differential equations, Engineering analysis with boundary elements, 33(1) (2009) 83-92.
[19] M. Naisipour, M.H. Afshar, B. Hassani, A.R. Firoozjaee, Collocation discrete least square (CDLS) method for elasticity problems, International Journal of Civil Engineering. v7, (2009) 9-18.
[20] M. Afshar, M. Lashckarbolok, G. Shobeyri, Collocated discrete least squares meshless (CDLSM) method for the solution of transient and steady‐ state hyperbolic problems, International journal for numerical methods in fluids, 60(10) (2009) 1055-1078.
[21] S. Faraji, M. Afshar, Node enrichment-moving error estimate and adaptive refinement in Mixed Discrete Least Squares Meshless method for solution of elasticity problems, Modares Mechanical Engineering, 14(3) (2014) 194-202. (In persian).
[22] S.N. Kazeroni, M. Afshar, An adaptive node regeneration technique for the efficient solution of elasticity problems using MDLSM method, Engineering analysis with boundary elements, 50 (2015) 198-211.
[23] S. Faraji, M.H. Afshar, J. Amani, Mixed discrete least square meshless method for solution of quadratic partial differential equations, Scientia Iranica, 21(3) (2014) 492-504.
[24] S. Faraji, M. Kolahdoozan, M.H. Afshar, Collocated Mixed Discrete Least Squares Meshless (CMDLSM) method for solving quadratic partial differential equations, Scientia Iranica, 25(4) (2018) 2000-2011.
[25] S. Faraji, M. Kolahdoozan, M.H. Afshar, Mixed discrete least squares meshless method for solving the linear and non-linear propagation problems, Scientia Iranica, 25(2) (2018) 565-578.
[26] S.F. Gargari, M. Kolahdoozan, M. Afshar, Mixed Discrete Least Squares Meshfree method for solving the incompressible Navier–Stokes equations, Engineering analysis with boundary elements, 88 (2018) 64-79.
[27] S.F. Gargari, M. Kolahdoozan, M. Afshar, S. Dabiri, An Eulerian-Lagrangian Mixed Discrete Least Squares Meshfree method for incompressible multiphase flow problems, Applied Mathematical Modelling, (2019).
[28] G.-R. Liu, Y.-T. Gu, An introduction to meshfree methods and their programming, Springer Science & Business Media, 2005.
[29] N. Sukumar, Construction of polygonal interpolants: a maximum entropy approach, International Journal for Numerical Methods in Engineering, 61(12) (2004) 2159-2181.
[30] M. Arroyo, M. Ortiz, Local maximum‐entropy approximation schemes: a seamless bridge between finite elements and meshfree methods, International journal for numerical methods in engineering, 65(13) (2006) 2167-2202.
[31] N. Sukumar, Z. Huang, J.H. Prévost, Z. Suo, Partition of unity enrichment for bimaterial interface cracks, International journal for numerical methods in engineering, 59(8) (2004) 1075-1102.
[32] L. Gu, Moving kriging interpolation and elementfree Galerkin method, International journal for numerical methods in engineering, 56(1) (2003) 1-11.
[33] P. Lancaster, K. Salkauskas, Surfaces generated by moving least squares methods, Mathematics of computation, 37(155) (1981) 141-158.
[34] S. Atluri, J. Cho, H.-G. Kim, Analysis of thin beams, using the meshless local Petrov–Galerkin method, with generalized moving least squares interpolations, Computational Mechanics, 24(5) (1999) 334-347.
[35] K. Kiani, A. Nikkhoo, B. Mehri, Assessing dynamic response of multispan viscoelastic thin beams under a moving mass via generalized moving least square method, Acta Mechanica Sinica, 26(5) (2010) 721-733.
[36] A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, Springer Science & Business Media, 2010.
[38] P. Moin, Fundamentals of engineering numerical analysis, Cambridge University Press, 2010.
[39] E.R. Benton, G.W. Platzman, A table of solutions of the one-dimensional Burgers equation, Quarterly of Applied Mathematics, 30(2) (1972) 195-212.