[1] Saouma V, Sivaselvan M. Hybrid simulation: Theory, im- plementation and applications: CRC Press; 2014.
[2] Wallace M, Wagg D, Neild S. An adaptive polynomial based forward prediction algorithm for multi-actuator real- time dynamic substructuring. Proceedings of the Royal So- ciety A: Mathematical, Physical and Engineering Sciences. 2005;461(2064):3807-26.
[3] Tu J-Y, Hsiao W-D, Chen C-Y. Modelling and control is- sues of dynamically substructured systems: adaptive forward prediction taken as an example. Proceedings of the Royal So- ciety A: Mathematical, Physical and Engineering Sciences. 2014;470(2168):20130773.
[4] Zhou H, Wagg DJ, Li M. Equivalent force control com- bined with adaptive polynomial‐based forward prediction for real‐time hybrid simulation. Structural Control and Health Monitoring. 2017;24(11):e2018.
[5] Reinhorn A, Sivaselvan M, Weinreber S, Shao X. Real-time dynamic hybrid testing of structural systems. 2004.
[6] Gawthrop P, Virden D, Neild S, Wagg D. Emulator-based control for actuator-based hardware-in-the-loop testing. Con- trol Engineering Practice. 2008;16(8):897-908.
[7] Horiuchi T, Konno T. A new method for compensat- ing actuator delay in real–time hybrid experiments. Philo- sophical Transactions of the Royal Society of London Se-ries A: Mathematical, Physical and Engineering Sciences. 2001;359(1786):1893-909.
[8] Jung RY, Benson Shing P. Performance evaluation of a real‐time pseudodynamic test system. Earthquake engineering & structural dynamics. 2006;35(7):789-810.
[9] Chen C, Ricles JM. Improving the inverse compensation method for real‐time hybrid simulation through a dual com- pensation scheme. Earthquake Engineering & Structural Dy- namics. 2009;38(10):1237-55.
[10] Carrion JE, Spencer Jr BF. Model-based strategies for re- al-time hybrid testing. Newmark Structural Engineering Labo- ratory. University of Illinois at Urbana …; 2007. Report No.: 1940-9826.
[11] Chen C, Ricles JM. Tracking error-based servohydraulic actuator adaptive compensation for real-time hybrid simula- tion. Journal of Structural Engineering. 2010;136(4):432-40.
[12] Gao X, Castaneda N, Dyke SJ. Real time hybrid simu- lation: from dynamic system, motion control to experimen- tal error. Earthquake Engineering & Structural Dynamics. 2013;42(6):815-32.
[13] Ou G, Ozdagli AI, Dyke SJ, Wu B. Robust integrated ac- tuator control: experimental verification and real‐time hybrid‐ simulation implementation. Earthquake Engineering & Struc- tural Dynamics. 2015;44(3):441-60.
[14] Phillips BM, Takada S, Spencer Jr B, Fujino Y. Feedfor- ward actuator controller development using the backward-dif- ference method for real-time hybrid simulation. Smart Struc- tures and Systems. 2014;14(6):1081-103.
[15] Newmark NM, editor A method of computation for struc- tural dynamics1959: American Society of Civil Engineers.
[16] Wu B, Xu G, Wang Q, Williams MS. Operator‐splitting method for real‐time substructure testing. Earthquake Engi- neering & Structural Dynamics. 2006;35(3):293-314.
[17] Combescure D, Pegon P. α-Operator splitting time inte- gration technique for pseudodynamic testing error propaga- tion analysis. Soil Dynamics and Earthquake Engineering. 1997;16(7-8):427-43.
[18] Chang S-Y. Explicit pseudodynamic algorithm with unconditional stability. Journal of Engineering Mechanics. 2002;128(9):935-47.
[19] Wu B, Wang Q, Benson Shing P, Ou J. Equivalent force control method for generalized real‐time substructure testing with implicit integration. Earthquake engineering & structural dynamics. 2007;36(9):1127-49.
[20] Chen C, Ricles JM. Development of direct integration al- gorithms for structural dynamics using discrete control theory. Journal of Engineering Mechanics. 2008;134(8):676-83.
[21] Gui Y, Wang J-T, Jin F, Chen C, Zhou M-X. Develop- ment of a family of explicit algorithms for structural dy- namics with unconditional stability. Nonlinear Dynamics. 2014;77(4):1157-70.
[22] Chung J, Hulbert G. A time integration algorithm for structural dynamics with improved numerical dissipation: the generalized-α method. 1993.
[23] Kolay C, Ricles JM, Marullo TM, Mahvashmohammadi
A, Sause R. Implementation and application of the uncondi- tionally stable explicit parametrically dissipative KR‐α method for real‐time hybrid simulation. Earthquake Engineering & Structural Dynamics. 2015;44(5):735-55.
[24] Ahmadizadeh M, Mosqueda G, Reinhorn A. Compensa- tion of actuator delay and dynamics for real‐time hybrid struc- tural simulation. Earthquake Engineering & Structural Dynam- ics. 2008;37(1):21-42.
[25] Darby A, Williams M, Blakeborough A. Stability and de- lay compensation for real-time substructure testing. Journal of Engineering Mechanics. 2002;128(12):1276-84.
[26] Wu B, Wang Z, Bursi OS. Actuator dynamics compen- sation based on upper bound delay for real‐time hybrid sim- ulation. Earthquake Engineering & Structural Dynamics. 2013;42(12):1749-65.
[27] Shi P, Wu B, Spencer Jr BF, Phillips BM, Chang CM. Real‐time hybrid testing with equivalent force control meth- od incorporating Kalman filter. Structural Control and Health Monitoring. 2016;23(4):735-48.
[28] Horiuchi T, Inoue M, Konno T, Namita Y. Real‐time hybrid experimental system with actuator delay compensation and its application to a piping system with energy absorber. Earth- quake Engineering & Structural Dynamics. 1999;28(10):1121- 41.
[29] Wallace M, Sieber J, Neild SA, Wagg DJ, Krauskopf B. Stability analysis of real‐time dynamic substructuring using delay differential equation models. Earthquake engineering & structural dynamics. 2005;34(15):1817-32.
[30] Kyrychko Y, Blyuss K, Gonzalez-Buelga A, Hogan S, Wagg D. Real-time dynamic substructuring in a coupled os- cillator–pendulum system. Proceedings of the Royal Soci- ety A: Mathematical, Physical and Engineering Sciences. 2006;462(2068):1271-94.
[31] Mercan O, Ricles JM. Stability analysis for real‐time pseudodynamic and hybrid pseudodynamic testing with mul- tiple sources of delay. Earthquake Engineering & Structural Dynamics. 2008;37(10):1269-93.
[32] Chi F, Wang J, Jin F. Delay-dependent stability and added damping of SDOF real-time dynamic hybrid testing. Earth- quake Engineering and engineering vibration. 2010;9(3):425- 38.
[33] Botelho RM, Christenson RE. Robust stability and per- formance analysis for multi-actuator real-time hybrid substruc- turing. Dynamics of Coupled Structures, Volume 4: Springer; 2015. p. 1-7.
[34] Chen C, Ricles JM. Stability analysis of SDOF real‐time
hybrid testing systems with explicit integration algorithms and actuator delay. Earthquake Engineering & Structural Dynam- ics. 2008;37(4):597-613.
[35] Zhu F, Wang JT, Jin F, Chi FD, Gui Y. Stability analysis of MDOF real‐time dynamic hybrid testing systems using the discrete‐time root locus technique. Earthquake Engineering & Structural Dynamics. 2015;44(2):221-41.
[36] Maghareh A, Dyke SJ, Prakash A, Bunting GB. Estab
lishing a predictive performance indicator for real‐time hybrid simulation. Earthquake Engineering & Structural Dynamics. 2014;43(15):2299-318.
[37] Maghareh A, Dyke S, Rabieniaharatbar S, Prakash A. Pre- dictive stability indicator: a novel approach to configuring a real‐time hybrid simulation. Earthquake Engineering & Struc- tural Dynamics. 2017;46(1):95-116.