Influence of Bacteria on Performance of Air Entrained Concrete

Document Type : Research Article

Authors

Department of Civil Engineering, Isfahan University of Technology, Isfahan, Iran

Abstract

Biological methods (adding bacteria to mixing water) is a one way to increase durability of concrete and repairing the cracks. Studies show that concrete contains bacteria has harsh environment, i.e. very high pH, small pore size and dry conditions, hence bacteria should be protected from this circumstances. In this study, for the first time, air entrained concrete is used for protecting the bacteria in the harsh condition of concrete. The effect of using sporosarcina pasteurii, which is a calcium carbonate-producing bacteria, on the performance of air entrained concrete has been studied in the carbonation depth; to do so, 24 concrete prisms were made using bacterial strains accompanied with mixing water. The results indicated that bacteria incorporation in air entrained concrete, near the source of calcium, reduces carbonation depth.

Keywords

Main Subjects


[1] N. Chahal, R. Siddique, A. Rajor, Influence of bacteria on the compressive strength, water absorption and rapid chloride permeability of concrete incorporating silica fume, Construction and Building Materials, 37(1) (2012) 645-651.
[2] N. Fattuhi, Concrete carbonation as influenced by curing regime, Cement and Concrete Research, 18(3) (1988) 426-430.
[3] J. Wang, K. Van Tittelboom, N. De Belie, W. Verstraete, Use of silica gel or polyurethane immobilized bacteria for self-healing concrete, Construction and Building Materials, 26(1) (2012) 532-540.
[4] K. Van Tittelboom, N. De Belie, W. De Muynck, W. Verstraete, Use of bacteria to repair cracks in concrete, Cement and Concrete Research, 40(1) (2010) 157-166.
[5] S. Ghosh, M. Biswas, B. Chattopadhyay, S. Mandal, Microbial activity on the microstructure of bacteria modified mortar, Cement and Concrete Composites, 31(2) (2009) 93-98.
[6] V. Ivanov, J. Chu, Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ, Reviews in Environmental Science and Bio/Technology, 7(2) (2008) 139-153.
[7] H.M. Jonkers, A. Thijssen, G. Muyzer, O. Copuroglu, E. Schlangen, Application of bacteria as self-healing agent for the development of sustainable concrete, Ecological Engineering, 36(2) (2010) 230-235.
[8] H.M. Jonkers, A. Thijssen, G. Muyzer, O. Copuroglu, E. Schlangen, Application of bacteria as self-healing agent for the development of sustainable concrete, Ecological Engineering, 36(2) (2010) 230-235.
[9] M.G. Sierra-Beltran, H. Jonkers, E. Schlangen, Characterization of sustainable bio-based mortar for concrete repair, Construction and Building materials, 67 (2014) 344-352.
[10] J. Xu, W. Yao, Multiscale mechanical quantification of self-healing concrete incorporating non-ureolytic bacteria-based healing agent, Cement and Concrete Research, 64 (2014) 1-10.
[11] U. Gollapudi, C. Knutson, S. Bang, M. Islam, A new method for controlling leaching through permeable channels, Chemosphere, 30(4) (1995) 695-705.
[12] W. De Muynck, K. Cox, N.D. Belie, W. Verstraete, Bacterial carbonate precipitation as an alternative surface treatment for concrete, Construction and Building Materials, 22(5) (2008) 875-885.
[13] N. Hosseini Balam, D. Mostofinejad, M. Eftekhar, Use of carbonate precipitating bacteria to reduce water absorption of aggregates, Construction and Building Materials, 141 (2017) 565-577.
[14] N. Hosseini Balam, D. Mostofinejad, M. Eftekhar, Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete, Construction and Building Materials, 145 (2017) 107-116.
[15] F. Nosouhian, Mostofinejad, D., Reducing Permeability of Concrete by Bacterial Mediation on Surface Using Treatment Gel, ACI Materials Journal, 113(3) (2016) 287-293.
[16] J.Y. Wang, D. Snoeck, S. Van Vlierberghe, W. Verstraete, N. De Belie, Application of hydrogel encapsulated carbonate precipitating bacteria for approaching a realistic self-healing in concrete, Construction and Building Materials, 68 (2014) 110-119.
[17] Y.Ç. Erşan, F.B. Da Silva, N. Boon, W. Verstraete, N. De Belie, Screening of bacteria and concrete compatible protection materials, Construction and Building Materials, 88 (2015) 196-203.
[18] Z.B. Bundur, A. Amiri, Y.Ç. Erşan, N. Boon, N. De Belie, Impact of air entraining admixtures on biogenic calcium carbonate precipitation and bacterial viability, Cement and Concrete Research, 98 (2017) 44-49.
[19] F. Nosouhian, Mostofinejad, D., and Hasheminejad, H., Concrete Durability Improvement in a Sulfate Environment Using Bacteria, Journal of Materials in Civil Engineering, ASCE, 28(1) (2015) 1-12.
[20] F. Nosouhian, Mostofinejad, D., and Hasheminejad, H., Influence of biodeposition treatment on concrete durability in a sulphate environment, biosystems engineering, 133 (2015) 141-152.
[21] V. Wiktor, H.M. Jonkers, Quantification of crack-healing in novel bacteria-based self-healing concrete, Cement and Concrete Composites, 33(7) (2011) 763-770.
[22] ACI 211, Standard Practice for selecting Proportions for Normal, Heavyweight, and Mass concrete, Farmington Hills, MI, USA, in, 2009.
[23] J.-W.C. Cheng-Feng Chang, The experimental investigation of concrete carbonation depth, Cement and Concrete Research, 36(9) (2006) 1760-1767.
[24] D.C. Park, Carbonation of concrete in relation to CO2 permeabilityand degradation of coatings, Construction and Building Materials, 22(11) (2008) 2260-2268
[25] V.G. Papadakis, Vayenas, C. G., & Fardis, M. N. , Fundamental modeling and experimental investigation of concrete carbonation, ACI materials journal, 88(4) (1991).