ارزیابی راهکار‌های کاهش شوری آب رودخانه کارون با استفاده از سناریو‌های مدیریتی

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه مهندسی سازه های آبی، دانشکده کشاورزی، دانشگاه تربیت مدرس، تهران، ایران

چکیده

رودخانه کارون بزرگترین و طولانیترین رودخانه ایران است که در سالهای اخیر بارگذاری منابع آلاینده موجب افزایش شوری آب رودخانه شده است. هدف از این تحقیق، بررسی راهکارهای مدیریتی برای کاهش شوری رودخانه بصورت  سناریوهای حذف و کاهش بارگذاری منابع آلاینده نقطهای در محدوده ملاثانی تا فارسیات (مهمترین بازه تراکم جمعیتی، صنعتی و کشاورزی) با مدل MIKE11است. نتایج سناریوی حذف منابع آلاینده نشان داد، حذف منابع کشاورزی در فصل خشک و حذف منابع صنعتی و شهری در فصل تر به ترتیب در بالادست و پاییندست شهر اهواز تاثیر زیادی در کاهش شوری رودخانه دارد. نتایج سناریوی کاهش نشان داد، کاهش از مرز بالادست در انتهای محدوده مطالعاتی در فصل تر و خشک به ترتیب با متوسط کاهش 35/10و 26/10درصد شوری رودخانه مؤثر است. نتایج شبیهسازی گزینههای ترکیبی نشان داد که، سناریوی کاهش %52شوری از مرز بالادست همراه کاهش %30از منابع نقطهای در دو فصل تر و خشک به ترتیب با متوسط 60و 46درصد کاهش شوری عملکرد بهتری نسبت به سایر گزینهها در کاهش شوری رودخانه دارد. مقایسه نتایج سناریوهای برتر با حدود مجاز استاندارد شوری آب نشان داد که در هر دو فصل تر و خشک، شرایط حد مجاز آب شرب و کشاورزی قابل تأمین است .

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Karun River Water Salinity Reduction Strategies Using Management Scenarios

نویسندگان [English]

  • B. Fakouri Dekahi
  • M. Mazaheri
  • J. Mohammad Vali Samani
Department of Water Structures, Faculty of Agriculture, Tarbiat Modares University, Tehran, Iran
چکیده [English]

Karun River poses the largest and longest river of Iran that its water Salinity has been decreased in recent years owing to pollutant sources loading. The aim of this study is evaluating management practices to reduce river salinity in form of removal and reduction scenarios of point contaminant sources ranging from Mollasani to Farsiat (most critical range of population, industrial and agricultural density) using MIKE11 model. Reduction scenario results showed that the scenario of reducing from upstream boundary at the end of study area is influential on river salinity with the average reduction of 35.10 and 26.10% in wet and dry seasons, respectively. Results related to the simulation of combined options implied that the 52% reduction scenario from upstream boundary together with decreased point sources by 30% in both wet and dry seasons, respectively, with an average salinity of 60 and 46% outperform other options to reduce the river salinity. Comparing the results of premier scenarios with standard water salinity limits showed that in both wet and dry seasons, standard limit conditions connected with drinking and agricultural water could be met. The outcomes of this research demonstrate that rivers water quality can be increased by employing contaminant sources management strategies.

کلیدواژه‌ها [English]

  • Karun River
  • Management Strategies
  • Loading Removal
  • Loading Reduction
  • MIKE1
[1] D.F. Shmueli, Water quality in international river basins, Political Geography, 18(4) (1999) 437-476.
[2] N.W. Quinn, Adaptive implementation of information technology for real-time, basin-scale salinity management in the San Joaquin Basin, USA and Hunter River Basin, Australia, Agricultural water management, 98(6) (2011) 930-940.
[3] L. Somlyódy, M. Henze, L. Koncsos, W. Rauch, P. Reichert, P. Shanahan, P. Vanrolleghem, River Water Quality Modelling: III. Future of the Art, Water Science and Technology, 38(11) (1998) 253-260.
[4] Q.T. Doan, Y. C. Chen, P. K. Mishra, Numerical Modeling in Water Quality Management for Rivers Case Study of the Day/ Nhue River Sub-basin, Vietnam, Journal of Earth Sciences and Engineering, 6(5) (2013) 1111-1119.
[5] G.B. McBride, Calculating stream reaeration coeffcients from oxygen profles, Journal of Environmental Engineering, 128(4) (2002) 384-386.
[6] R. Prairie James, B. Rajagopalan, J. Fulp Terrance, A. Zagona Edith, Statistical Nonparametric Model for Natural Salt Estimation, Journal of Environmental Engineering, 131(1) (2005) 130-138.
[7] M. Bagherian Marzouni, A.M. Akhoundalib, H. Moazed, N. Jaafarzadeh, J. Ahadian, H. Hasoonizadeh, Evaluation of Karun River Water Quality Scenarios Using Simulation Model Results, International Journal of Advanced Biological and  Biomedical Research, 2(2) (2014) 339-358.
[8] E. Farber, A. Vengosh, I. Gavrieli, A. Marie, T.D. Bullen, B. Mayer, R. Holtzman, M. Segal, U. Shavit, Management scenarios for the Jordan River salinity crisis, Applied Geochemistry, 20(11) (2005) 2138-2153.
[9] R. Kerachian, Waste-Load Allocation Model for Seasonal River Water Quality Management: Application of Sequential Dynamic Genetic Algorithms, Scientia Iranica, 12(2) (2005) 117–130.
[10] V. Cat, Assessment of Saline Water Intrusion into Huong River in Dry Season, Journal of Shipping and Ocean Engineering, 1(1) (2011) 54-64.
[11] Y. Yu, H. Zhang, C. Lemckert, Salinity and turbidity distributions in the Brisbane River estuary, Australia, Journal of Hydrology, 519 (2014) 3338-3352.
[12] Q.T. Doan, C.D. Nguyen, Y.C. Chen, K.M. Pawan, Modeling the influence of river flow and salinity intrusion in the Mekong river estuary, Vietnam, Lowland Technology International, 16(1) (2014) 14-25.
[13] H. Ghadiri, Salinization of Karun River in Iran by Shallow Groundwater and Seawater Encroachment,
Advances in Hydro-Science and Engineering, 4 (2016) 1-9.
[14] Iran Ministry of Power, the decisions of the twenty-ffth session of the Supreme Council for Water Iran, Ministry of Power, Tehran, Iran, 2016. (In Persian).
[15] K. Naddaf, H. Honari, M. Ahmadi, Water quality trend analysis for the Karoon River in Iran, Environmental monitoring and assessment, 134(1-3) (2007) 305-312.
[16] M. Karamouz, N. Mahjouri, R. Kerachian, River water quality zoning: a case study of Karoon and Dez River system, Health Science and Engineering. 1(2) (2004) 16-27.
[17] M. Afkhami, M. Shariat, N. Jafarzadeh, H. Ghadiri, R. Nabizadeh, Developing a water quality management model for Karun and Dez Rivers, Environmental Health Science and Engineering, 4(2) (2007) 99-106.
[18] Khuzestan Water and Power Authority (KWPA) , An assessment of pollutants in Karun River: A report prepared by the Water Quality Assessment section, 2000.
[19] S. Kashefpour, J. Zahiri, Comparison of Empirical Equations' Application in the Advection-Dispersion Equation (ADE) on Sediment Transport Modelling, World Applied Sciences. 11(8) (2010) 1015-1024.
[20] R. Holtzman, U. Shavit, M. Segal-Rozenhaimer, I.Gavrieli, A. Marei, E. Farber, A. Vengosh, Quantifying Ground Water Inputs along the Lower Jordan River, 34 (2005) 897–906.
[21] Danish Hydraulic Institue (DHI), MIKE11 a modeling system for rivers and channels, Reference Manual, 2009.
[22] C. Lemckert, P. Campbell, G. Jenkins, Turbulence in the bottom boundary layer of Moreton Bay, Queensland, Australia, Journal of Coastal Research, (64) (2011) 1091.
[23] A. Roshanfekr, S. Kashefpour, N. Jafarzadeh, Numerical modelling of heavy metals for riverine
systems using a new approach to the source term in the ADE, Hydroinformatics, 10(3) (2008) 245- 255
[24] S. Mohammadi, S.M. Kashefpour, Numerical modeling of flow in riverine basins using an improved dynamic roughness coeffcient, Water resources, 41(4) (2014) 412-420.
[25] E. Kanda, J. Kosgei, E. Kipkorir, Simulation of organic carbon loading using MIKE 11 model: A case of River Nzoia, Kenya, Water Practice and Technolog,10 (2) (2015) 298- 304.
[26] H.B. Fischer, List, E. J., Koh, R. C. Y., Imberger, J.and Brooks, N. H, Mixing in inland and coastal waters, Academic Press, New York 1979, pp. 483.
[27] I.W. Seo, T.S. Cheong, Predicting longitudinal dispersion coeffcient in natural streams, Journal of hydraulic engineering, 124(1) (1998) 25-32.
[28] Z. Q. Deng, V.P. Singh, L. Bengtsson, Longitudinal dispersion coeffcient in straight rivers, Journal of hydraulic engineering, 127(11) (2001) 919-927.
[29] S.M. Kashefpour, R.A. Falconer, Longitudinal dispersion coeffcients in natural channels, Water Research, 36(6) (2002) 1596-1608.
[30] M. Hughes, P. Harris, T. Hubble, Dynamics of the turbidity maximum zone in a micro-tidal estuary: Hawkesbury River, Australia, Sedimentology, 45(2) (1998) 397-410.
[31] M. Naseri, S.M. Kashefpour, Hydrodynamic simulation and qualitative parameters in the river system by using  FASTER., Journal of Iran Water Research 7(13) (2013) 121-129. (In Persian). [32] W.H.O. WHO, Guidelines for drinking water quality: surveillance and control of community supplies, 2008.
[33] Food and Agricultural Organization of the United Nations (FAO), Water quality for agriculture, 1976.