Mechanical Properties and Photocatalytic Reactions of Zinc Oxide Nanoparticles in the Cement Environment

Document Type : Research Article

Authors

Civil Engineering Faculty, Graduate University of Advanced Technology, Kerman, Iran

Abstract

In order to evaluate the performance of zinc oxide nanoparticles on the microstructure and mechanical properties of cement-based materials, compressive strength test, reaction with calcium hydroxide, shrinkage test, x-ray diffraction and infrared spectroscopy analyses were carried out. The results indicated that zinc oxide nanoparticles have signifcant  influences on the mechanical properties of cement based surfaces. It has also been shown that a good reaction with calcium hydroxide occurs and signifcant reduction in shrinkage of cement mortars was observed. Moreover, the nano zinc oxide incorporated surfaces had high capability in removing the contaminants and provide photocatalytic characteristics for the surfaces.

Keywords

Main Subjects


[1] H. Madani, A. Bagheri, T. Parhizkar, The pozzolanic reactivity of monodispersed nanosilica hydrosols and their influence on the hydration characteristics of Portland cement, Cement and Concrete Research 42)2012( 1563–1570)
[2] H.Madani, A.Khaghani, Investigation on the role of Titanium Di-Oxide on reducing the environmental pollution and increasing the photocatalytic and mechanical properties of cement mortars, the frst conference on nanotechnology application in concrete industry, Garmsar, Alaoldolleduniversity, 2015.
[3] R.M. Mohamed, D.L. McKinney, W.M. Sigmund, Enhanced nanocatalysts, Materials Science Engineering R Reports, 73 )2012( 1–13).
[4] S. Malato, P. Fernández-Ibáñez, M. I. Maldonado, J.Blanco, W. Gernjak, Decontamination and disinfection of water by solar photocatalysis: recent overview and trends, Catalysts Today, 147 )2009( 1–59).
[5] A. A. Khodja, T. Sehili, J.-F. Pilichowski, P. Boule, Photocatalytic degradation of 2-phenylphenol on TiO2 and ZnO in aqueous suspensions, Photochemistry and Photobiology. A Chemistry, 141 )2001( 231–239).
[6] C. Lizama, J. Freer, J. Baeza, H. D. Mansilla, Optimized photodegradation of Reactive Blue 19 on TiO2 and ZnO
suspensions, Catalysis Today, 76 )2002( 235–246).
[7] D. Spasiano, R. Marotta, S. Malato, P. Fernandez-Ibañez, I. Di Somma, Solar photocatalysis: materials, reactors,
some commercial, and pre-industrialized applications.A comprehensive approach, Applied Catalysis B:
Environmental, 170 )2015( 90–123).
[8] UNE 80305:2012, White Cement - Specifcations and Conformity Criteria.
[9] W.A. Moura, J.P. Gonçalves, M.B.L. Lima, Copper slag waste as a supplementary cementing material to concrete”. J. Mater. Sci, 42 )2007( 2226–2230).
[10] H. Vikan, H. Justnes, Rheology of cementitious paste with silica fume or limestone, Cement and Concrete Research 37)2007( 1512–1517).
[11] G. Hüsken, M. Hunger, H. J. H. Brouwers, Experimental study of photocatalytic concrete products for air purifcation, Building and Environment, 44 (2009) 2463–2474.
[12] J. Jiang, G. Oberdörster, P. Biswas, Characterization of size, surface charge, and agglomeration state of nanoparticle dispersions for toxicological studies, Nanoparticle Res.earch, 11 )2009(, 77–89).
[13] ISO 6274:1982 Concrete -- Sieve analysis of aggregates.
[14] ASTM C 33/C 33M, Standard Specifcation for Concrete
 Aggregates, Annual book of ASTM standards, 2013.
[15] BS 1881 Part 116, Method for determination of compressive strength of concrete, British Standards, 1983.
[16] E. Raask, M. C. Bhaskar, Pozzolanic activity of pulverized fuel ash, Cement and Concrete Research, 5 )1975(, 363–375.
[17] M. P. de Luxán, F. Madruga, J. Saavedra, Rapid evaluation of pozzolanic activity of natural products by conductivity measurement, Cement and Concrete Research, 19)1989( 63–68).
[18] J. Paya, M. V Borrachero, J. Monzo, E. Peris-Mora, F. Amahjour, Enhanced conductivity measurement techniques for evaluation of fly ash pozzolanic activity”. Cement and Concrete Research, 31 )2001( 41–49).
[19] ASTM C490 / C490M, Standard Practice for Use of Apparatus for the Determination of Length Change of Hardened Cement Paste, Mortar, and Concrete, , Annual book of ASTM standards, 2013.
[20] B. Stuart, Infrared spectroscopy. Wiley Online Library, 2005.
[21] M. Y. A. Mollah, W. Yu, R. Schennach, D. L. Cocke, A Fourier transform infrared spectroscopic investigation of the early hydration of Portland cement and the influence of sodium lignosulfonate, Cement and Concrete Research, 30 )2000   ( 267–273).
[22] BS EN 12390-3, Testing hardened concrete-Part 3: Compressive strength of test specimens, British Standards, 2009.
[23] M. Yousuf, A. Mollah, P. Palta, T. R. Hess, R. K. Vempati, D. L. Cocke, Chemical and physical effects of sodium  lignosulfonate superplasticizer on the hydration of Portland cement and solidifcation/stabilization consequences, Cement and Concrete Research, 25 )1995( 671–682).
[24] F. F. Ataie, M. C. G. Juenger, S. C. Taylor-Lange, K. A. Riding, Comparison of the retarding mechanisms of zinc oxide and sucrose on cement hydration and interactions with supplementary cementitious materials, Cement and Concrete Research, 72 )2015( 128–136).