[1] N. Taniguchi, On the basic concept of'nano-technology', in: Proc. Intl. Conf. Prod. Eng. Tokyo, Part II, 1974, Japan Society of Precision Engineering, 1974.
[2] M. Ma, J. Tu, Y. Yuan, X. Wang, K. Li, F. Mao, Z. Zeng, Electrochemical performance of ZnO nanoplates as anode materials for Ni/Zn secondary batteries, Journal of Power Sources, 179(1) (2008) 395-400.
[3] J. Yguerabide, E.E. Yguerabide, Resonance light scattering particles as ultrasensitive labels for detection of analytes in a wide range of applications, Journal of Cellular Biochemistry, 84(S37) (2001) 71-81.
[4] M. Aagesen, C. Sørensen, Nanoplates and their suitability for use as solar cells, Proceedings of Clean Technology, (2008) 109-112.
[5] W. Bai, X. Zhu, Z. Zhu, J. Chu, Synthesis of zinc oxide nanosheet thin films and their improved field emission and photoluminescence properties by annealing processing, Applied Surface Science, 254(20) (2008) 6483-6488.
[6] A. Farajpour, A. Shahidi, M. Mohammadi, M. Mahzoon, Buckling of orthotropic micro/nanoscale plates under linearly varying in-plane load via nonlocal continuum mechanics, Composite Structures, 94(5) (2012) 1605-1615.
[7] A. Farajpour, A.A. Solghar, A. Shahidi, Postbuckling analysis of multi-layered graphene sheets under non-uniform biaxial compression, Physica E: Low-dimensional Systems and Nanostructures, 47 (2013) 197-206.
[8] T. Aksencer, M. Aydogdu, Levy type solution method for vibration and buckling of nanoplates using nonlocal elasticity theory, Physica E: Low-dimensional Systems and Nanostructures, 43(4) (2011) 954-959.
[9] P. Malekzadeh, A. Setoodeh, A.A. Beni, Small scale effect on the thermal buckling of orthotropic arbitrary straight-sided quadrilateral nanoplates embedded in an elastic medium, Composite Structures, 93(8) (2011) 2083-2089.
[10] P. Malekzadeh, A. Setoodeh, A.A. Beni, Small scale effect on the free vibration of orthotropic arbitrary straight-sided quadrilateral nanoplates, Composite Structures, 93(7) (2011) 1631-1639.
[11] V. Abdolvahab, P. Memarzadeh, Effect of crack damage on size-dependent instability of graphene sheets, Applied Mathematical Modelling, 129 (2024) 408-427.
[12] M. Alinia, S. Hosseinzadeh, H. Habashi, Numerical modelling for buckling analysis of cracked shear panels, Thin-Walled Structures, 45(12) (2007) 1058-1067.
[13] M. Alinia, S. Hosseinzadeh, H. Habashi, Buckling and post-buckling strength of shear panels degraded by near border cracks, Journal of Constructional Steel Research, 64(12) (2008) 1483-1494.
[14] R. Brighenti, A. Carpinteri, Buckling and fracture behaviour of cracked thin plates under shear loading, Materials & Design, 32(3) (2011) 1347-1355.
[15] A. Milazzo, I. Benedetti, V. Gulizzi, A single-domain Ritz approach for buckling and post-buckling analysis of cracked plates, International Journal of Solids and Structures, 159 (2019) 221-231.
[16] R. Brighenti, Buckling of cracked thin-plates under tension or compression, Thin-Walled Structures, 43(2) (2005) 209-224.
[17] R. Brighenti, Numerical buckling analysis of compressed or tensioned cracked thin plates, Engineering structures, 27(2) (2005) 265-276.
[18] M.R. Khedmati, P. Edalat, M. Javidruzi, Sensitivity analysis of the elastic buckling of cracked plate elements under axial compression, Thin-Walled Structures, 47(5) (2009) 522-536.
[19] A. Nasirmanesh, S. Mohammadi, XFEM buckling analysis of cracked composite plates, Composite Structures, 131 (2015) 333-343.
[20] S. Saberi, P. Memarzadeh, T. Zirakian, Study of buckling stability of cracked plates under uniaxial compression using singular FEM, Structural Engineering and Mechanics, An Int'l Journal, 69(4) (2019) 417-426.
[21] P. Memarzadeh, S. Mousavian, M.H. Ghehi, T. Zirakian, Effect of crack location on buckling analysis and SIF of cracked plates under tension, Steel and Composite Structures, An International Journal, 35(2) (2020) 215-235.
[22] M.H. Taheri, P. Memarzadeh, Experimental and numerical study of compressive buckling stability of plates with off-center crack, Theoretical and Applied Fracture Mechanics, 109 (2020) 102706.
[23] M.H. Taheri, P. Memarzadeh, Effect of crack on shear buckling of CNTRC plates, International Journal of Mechanical Sciences, 229 (2022) 107519.
[24] B. Kadari, A. Bessaim, A. Tounsi, H. Heireche, A.A. Bousahla, M.S.A. Houari, Buckling analysis of orthotropic nanoscale plates resting on elastic foundations, Journal of Nano Research, 55 (2018) 42-56.
[25] M. Rajabi, H. Lexian, A. Rajabi, Analysis of Nanoplate with a Central Crack Under Distributed Transverse Load Based on Modified Nonlocal Elasticity Theory, Journal of Solid Mechanics, 13(2) (2021) 213-232.
[26] D. Panahandeh-Shahraki, A.A. Rad, Buckling of cracked functionally graded plates supported by Pasternak foundation, International Journal of Mechanical Sciences, 88 (2014) 221-231.
[27] A.A. Rad, D. Panahandeh-Shahraki, Buckling of cracked functionally graded plates under tension, Thin-Walled Structures, 84 (2014) 26-33.
[28] S. Natarajan, S. Chakraborty, M. Ganapathi, M. Subramanian, A parametric study on the buckling of functionally graded material plates with internal discontinuities using the partition of unity method, European Journal of Mechanics-A/Solids, 44 (2014) 136-147.
[29] P. Liu, T. Bui, D. Zhu, T. Yu, J. Wang, S. Yin, S. Hirose, Buckling failure analysis of cracked functionally graded plates by a stabilized discrete shear gap extended 3-node triangular plate element, Composites Part B: Engineering, 77 (2015) 179-193.
[30] H. Tanzadeh, H. Amoushahi, Buckling analysis of orthotropic nanoplates based on nonlocal strain gradient theory using the higher-order finite strip method (H-FSM), European Journal of Mechanics-A/Solids, 95 (2022) 104622.
[31] X. Wang, X. Shi, A.E. Ragab, R. Sabetvand, Investigating the effect of external heat flux on the crack growth process in an aluminum nanoplate using molecular dynamics simulation, International Communications in Heat and Mass Transfer, 150 (2024) 107199.
[32] R.A. Arpanahi, B. Mohammadi, M.T. Ahmadian, S.H. Hashemi, Study on the buckling behavior of nonlocal nanoplate submerged in viscous moving fluid, International Journal of Dynamics and Control, 11(6) (2023) 2820-2830.
[33] M. Sadeghian, A. Palevicius, G. Janusas, Nonlinear Thermal/Mechanical Buckling of Orthotropic Annular/Circular Nanoplate with the Nonlocal Strain Gradient Model, Micromachines, 14(9) (2023) 1790.
[34] H.R. Analooei, M. Azhari, H. Salehipour, Thermo-electro-mechanical vibration and buckling analysis of quadrilateral and triangular nanoplates with the nonlocal finite strip method, Mechanics Based Design of Structures and Machines, 51(3) (2023) 1684-1704.
[35] A.A. Daikh, M.-O. Belarbi, A. Khechai, L. Li, H.M. Ahmed, M.A. Eltaher, Buckling of bi-coated functionally graded porous nanoplates via a nonlocal strain gradient quasi-3D theory, Acta Mechanica, 234(8) (2023) 3397-3420.
[36] Y. Chen, J.D. Lee, A. Eskandarian, Atomistic viewpoint of the applicability of microcontinuum theories, International journal of solids and structures, 41(8) (2004) 2085-2097.
[37] A.C. Eringen, Nonlocal polar elastic continua, International journal of engineering science, 10(1) (1972) 1-16.
[38] A.C. Eringen, On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves, 1983.
[39] A.C. Eringen, D. Edelen, On nonlocal elasticity, International journal of engineering science, 10(3) (1972) 233-248.
[40] A. Eringen, J. Wegner, Nonlocal continuum field theories, in, American Society of Mechanical Engineers Digital Collection, 2003.
[41] P.P. Minh, T. Van Do, D.H. Duc, N.D. Duc, The stability of cracked rectangular plate with variable thickness using phase field method, Thin-Walled Structures, 129 (2018) 157-165.
[42] J.N. Reddy, Theory and analysis of elastic plates and shells, CRC press, 2006.
[43] A.R. Khoei, Extended finite element method: theory and applications, John Wiley & Sons, 2015.
[44] R.D. Cook, Concepts and applications of finite element analysis, John wiley & sons, 2007.
[45] J.N. Reddy, An introduction to the finite element method, McGraw-Hill New York, 2005.
[46] M. Sobhy, Natural frequency and buckling of orthotropic nanoplates resting on two-parameter elastic foundations with various boundary conditions, Journal of Mechanics, 30(5) (2014) 443-453.
[47] S. Pradhan, Buckling of single layer graphene sheet based on nonlocal elasticity and higher order shear deformation theory, Physics letters A, 373(45) (2009) 4182-4188.
[48] S. Pradhan, T. Murmu, Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory, Physica E: Low-dimensional Systems and Nanostructures, 42(5) (2010) 1293-1301.
[49] S. Pradhan, T. Murmu, Small scale effect on the buckling of single-layered graphene sheets under biaxial compression via nonlocal continuum mechanics, Computational materials science, 47(1) (2009) 268-274.