[1] C.-H. Chen, Performance-based seismic demand assessment of concentrically braced steel frame buildings, University of California, Berkeley, 2010.
[2] S. Kiggins, C.-M. Uang, Reducing residual drift of buckling-restrained braced frames as a dual system, Engineering Structures, 28(11) (2006) 1525-1532.
[3] R. Tremblay, L. Tirca, Behaviour and design of multi-storey zipper concentrically braced steel frames for the mitigation of soft-storey response, in: STESSA 2003-Behaviour of Steel Structures in Seismic Areas, Routledge, 2018, pp. 471-477.
[4] A. Martin, G.G. Deierlein, Generalized modified modal superposition procedure for seismic design of rocking and pivoting steel spine systems, Journal of Constructional Steel Research, 183 (2021) 106745.
[5] L. Wiebe, C. Christopoulos, R. Tremblay, M. Leclerc, Mechanisms to limit higher mode effects in a controlled rocking steel frame. 1: Concept, modelling, and low‐amplitude shake table testing, Earthquake Engineering & Structural Dynamics, 42(7) (2013) 1053-1068.
[6] B. Qu, F. Sanchez-Zamora, M. Pollino, Transforming Seismic Performance of Deficient Steel Concentrically Braced Frames through Implementation of Rocking Cores, Journal of Structural Engineering, 141(5) (2015) 04014139.
[7] F.C. Blebo, D.A. Roke, Seismic-resistant self-centering rocking core system, Engineering Structures, 101 (2015) 193-204.
[8] T. Takeuchi, X. Chen, R. Matsui, Seismic performance of controlled spine frames with energy-dissipating members, Journal of Constructional Steel Research, 114 (2015) 51-65.
[9] J.-W. Lai, S.A. Mahin, Strongback System: A Way to Reduce Damage Concentration in Steel-Braced Frames, Journal of Structural Engineering, 141(9) (2015) 04014223.
[10] B.G. Simpson, Higher‐mode force response in multi‐story strongback‐braced frames, Earthquake Engineering & Structural Dynamics, 49(14) (2020) 1406-1427.
[11] B.G. Simpson, D. Rivera Torres, Simplified modal pushover analysis to estimate first-and higher-mode force demands for design of strongback-braced frames, Journal of Structural Engineering, 147(12) (2021) 04021196.
[12] M.S. Faramarzi, T. Taghikhany, Direct performance-based seismic design of strongback steel braced systems, in: Structures, Elsevier, 2020, pp. 482-495.
[13] M.S. Faramarzi, T. Taghikhany, A comparative performance-based seismic assessment of strongback steel braced frames, Journal of Building Engineering, 44 (2021) 102983.
[14] M.D. Symans, M.C. Constantinou, Semi-active control systems for seismic protection of structures: a state-of-the-art review, Engineering Structures, 21(6) (1999) 469-487.
[15] D.R. Sahoo, T. Singhal, S.S. Taraithia, A. Saini, Cyclic behavior of shear-and-flexural yielding metallic dampers, Journal of Constructional Steel Research, 114 (2015) 247-257.
[16] S. A. Mohebi, S. M. Zahrai , R. Raoufi, Seismic evaluation of steel structures retrofitted with supplemental elliptical damper, Amirkabir J. Civil Eng., 55(8) (2023) 1677-1700 (in Persian).
[17] Gh. Pachideh, M. Gholhaki, M. A. Kafi, Experimental and Numerical Evaluation of an Innovative Diamond-Scheme Bracing System Equipped with a Yielding Damper, Amirkabir J. Civil Eng., 53(11) (2022) 4557-4576(in Persian).
[18] B.G. Simpson, S.A. Mahin, Experimental and Numerical Investigation of Strongback Braced Frame System to Mitigate Weak Story Behavior, Journal of Structural Engineering, 144(2) (2018) 04017211.
[19] A. Soleymani, H. Saffari, A novel hybrid strong-back system to improve the seismic performance of steel braced frames, Journal of Building Engineering, 84 (2024) 108482.
[20] T. Trombetti, S. Silvestri, G. Gasparini, I. Ricci, Stiffness-strength-ductility-design approaches for crescent shaped braces, The Open Construction & Building Technology Journal, 3(1) (2009).
[21] M. Palermo, L. Pieraccini, A. Dib, S. Silvestri, T. Trombetti, Experimental tests on Crescent Shaped Braces hysteretic devices, Engineering Structures, 144 (2017) 185-200.
[22] E. Mokhtari, V. Laghi, M. Palermo, S. Silvestri, Quasi-static cyclic tests on a half-scaled two-storey steel frame equipped with Crescent Shaped Braces, Engineering Structures, 232 (2021) 111836.
[23] E. Mokhtari, M. Palermo, V. Laghi, A. Incerti, C. Mazzotti, S. Silvestri, Quasi-static cyclic tests on a half-scaled two-storey steel frame equipped with Crescent Shaped Braces at both storeys: Experimental vs. numerical response, Journal of Building Engineering, 62 (2022) 105371.
[24] M. Palermo, I. Ricci, S. Gagliardi, S. Silvestri, T. Trombetti, G. Gasparini, Multi-performance seismic design through an enhanced first-storey isolation system, Engineering Structures, 59 (2014) 495-506.
[25] M. Palermo, V. Laghi, G. Gasparini, S. Silvestri, T. Trombetti, Analytical estimation of the key performance points of the tensile force-displacement response of Crescent Shaped Braces, Soil Dynamics and Earthquake Engineering, 148 (2021) 106839.
[26] M. Palermo, S. Silvestri, G. Gasparini, T. Trombetti, Crescent shaped braces for the seismic design of building structures, Materials and Structures, 48 (2015) 1485-1502.
[27] S. Mazzoni, OpenSees command language manual, Pacific Earthquake Engineering Research (PEER) Center, (2006).
[28] J.-W. Lai, Experimental and analytical studies on the seismic behavior of conventional and hybrid braced frames, UC Berkeley, 2012.