[1] M. Gioffré, A. Vincenzini, N. Cavalagli, V. Gusella, M.A. Caponero, A. Terenzi, C. Pepi, A novel hemp-fiber bio-composite material for strengthening of arched structures: Experimental investigation, Construction and Building Materials, 308 (2021) 124969.
[2] S. Benfratello, C. Capitano, G. Peri, G. Rizzo, G. Scaccianoce, G. Sorrentino, Thermal and structural properties of a hemp–lime biocomposite, Construction and Building Materials, 48 (2013) 745-754.
[3] S. Barbhuiya, B. Bhusan Das, A comprehensive review on the use of hemp in concrete, Construction and Building Materials, 341 (2022) 127857.
[4] Y. Florentin, D. Pearlmutter, B. Givoni, E. Gal, A life-cycle energy and carbon analysis of hemp-lime bio-composite building materials, Energy and Buildings, 156 (2017) 293-305.
[5] N. Stevulova, J. Cigasova, I. Schwarzova, A. Sicakova, J. Junak, Sustainable Bio-Aggregate-Based Composites Containing Hemp Hurds and Alternative Binder, in: Buildings, 2018.
[6] M.R. Ahmad, B. Chen, S. Yousefi Oderji, M. Mohsan, Development of a new bio-composite for building insulation and structural purpose using corn stalk and magnesium phosphate cement, Energy and Buildings, 173 (2018) 719-733.
[7] J. Zorica, M. Sinka, G. Sahmenko, L. Vitola, A. Korjakins, D. Bajare, Hemp Biocomposite Boards Using Improved Magnesium Oxychloride Cement, in: Energies, 2022.
[8] C. Narattha, S. Wattanasiriwech, D. Wattanasiriwech, Effect of magnesium sulfate on properties of low calcium fly ash based-geopolymer- treated hemp shiv bio-concrete, Construction and Building Materials, 392 (2023) 131714.
[9] A. Ashrafian, M.J.T. Amiri, F. Haghighi, Modeling the Slump Flow of Self-Compacting Concrete Incorporating Metakaolin Using Soft Computing Techniques, in, 2019.
[10] M.J. Taheri Amiri, A. Ashrafian, F.R. Haghighi, M. Javaheri Barforooshi, Prediction of the Compressive Strength of Self-compacting Concrete containing Rice Husk Ash using Data Driven Models, mdrsjrns, 19(1) (2019) 209-221.
[11] A. Saberi, H. Ahmadi, D.S. Shayegan, A. Amirkardoust, A study on the impact of water storage and regulation projects on sustainable development goals using mouth brooding fish (MBF) algorithm, Sustainable Water Resources Management, 9(6) (2023) 196.
[12] D. Sedaghat Shayegan, A. Lork, S.A.H. Hashemi, Mouth brooding fish algorithm for cost optimization of reinforced concrete one way ribbed slabs, IUST, 9(3) (2019) 411-422.
[13] D. Sedaghat Shayegan, A. Lork, S.A.H. Hashemi, A New Hybrid Algorithm for Cost Optimization of Waffle Slab, Slovak Journal of Civil Engineering, 28(3) (2020) 40-46.
[14] D. Sedaghat Shayegan, A. Lork, S.A.H. Hashemi, Optimum cost design of reinforced concrete slabs using a metaheuristic algorithm., International Journal of Optimization in Civil Engineering, 12(4) (2022) 545-555.
[15] J. Duan, P.G. Asteris, H. Nguyen, X.-N. Bui, H. Moayedi, A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model, Eng. with Comput., 37(4) (2021) 3329–3346.
[16] K. Nasrollahzadeh, M.M. Basiri, Prediction of shear strength of FRP reinforced concrete beams using fuzzy inference system, Expert Syst. Appl., 41 (2014) 1006-1020.
[17] A.-D. Pham, N.-D. Hoang, Q.-T. Nguyen, Predicting Compressive Strength of High-Performance Concrete Using Metaheuristic-Optimized Least Squares Support Vector Regression, Journal of Computing in Civil Engineering, 30(3) (2016) 06015002.
[18] M. Açikgenç, M. Ulaş, K.E. Alyamaç, Using an Artificial Neural Network to Predict Mix Compositions of Steel Fiber-Reinforced Concrete, Arabian Journal for Science and Engineering, 40(2) (2015) 407-419.
[19] B. Kiani, A.H. Gandomi, S. Sajedi, R.Y. Liang, New Formulation of Compressive Strength of Preformed-Foam Cellular Concrete: An Evolutionary Approach, Journal of Materials in Civil Engineering, 28(10) (2016) 04016092.
[20] T. Kalman Šipoš, I. Miličević, R. Siddique, Model for mix design of brick aggregate concrete based on neural network modelling, Construction and Building Materials, 148 (2017) 757-769.
[21] I. Kara, Empirical modeling of shear strength of steel fiber reinforced concrete beams by gene expression programming, Neural Computing and Applications, 23 (2012).
[22] A. Behnood, V. Behnood, M. Modiri Gharehveran, K.E. Alyamac, Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm, Construction and Building Materials, 142 (2017) 199-207.
[23] Z.M. Yaseen, M.T. Tran, S. Kim, T. Bakhshpoori, R.C. Deo, Shear strength prediction of steel fiber reinforced concrete beam using hybrid intelligence models: a new approach, Engineering Structures, 177 (2018) 244-255.
[24] S. Khan, M. Ali Khan, A. Zafar, M.F. Javed, F. Aslam, M.A. Musarat, N.I. Vatin, Predicting the Ultimate Axial Capacity of Uniaxially Loaded CFST Columns Using Multiphysics Artificial Intelligence, Materials (Basel), 15(1) (2021).
[25] L. Sun, M. Koopialipoor, D.J. Armaghani, R. Tarinejad, M.M. Tahir, Applying a meta-heuristic algorithm to predict and optimize compressive strength of concrete samples, Eng. with Comput., 37(2) (2021) 1133–1145.
[26] Ł. Sadowski, M. Piechówka-Mielnik, T. Widziszowski, A. Gardynik, S. Mackiewicz, Hybrid ultrasonic-neural prediction of the compressive strength of environmentally friendly concrete screeds with high volume of waste quartz mineral dust, Journal of Cleaner Production, 212 (2019) 727-740.
[27] P. Asteris, A. Ashrafian, M. Rezaie-Balf, Prediction of the Compressive Strength of Self-Compacting Concrete using Surrogate Models, Computers and Concrete, 24 (2019) 137-150.
[28] M.A. DeRousseau, E. Laftchiev, J.R. Kasprzyk, B. Rajagopalan, W.V. Srubar, A comparison of machine learning methods for predicting the compressive strength of field-placed concrete, Construction and Building Materials, 228 (2019) 116661.
[29] E.M. Golafshani, A. Behnood, M. Arashpour, Predicting the compressive strength of normal and High-Performance Concretes using ANN and ANFIS hybridized with Grey Wolf Optimizer, Construction and Building Materials, 232 (2020) 117266.
[30] Z.H. Duan, S.C. Kou, C.S. Poon, Prediction of compressive strength of recycled aggregate concrete using artificial neural networks, Construction and Building Materials, 40 (2013) 1200-1206.
[31] M. Shahnewaz, M.S. Alam, Genetic algorithm for predicting shear strength of steel fiber reinforced concrete beam with parameter identification and sensitivity analysis, Journal of Building Engineering, 29 (2020) 101205.
[32] A.A. Shahmansouri, M. Yazdani, S. Ghanbari, H. Akbarzadeh Bengar, A. Jafari, H. Farrokh Ghatte, Artificial neural network model to predict the compressive strength of eco-friendly geopolymer concrete incorporating silica fume and natural zeolite, Journal of Cleaner Production, 279 (2021) 123697.
[33] U.K. Sevim, H.H. Bilgic, O.F. Cansiz, M. Ozturk, C.D. Atis, Compressive strength prediction models for cementitious composites with fly ash using machine learning techniques, Construction and Building Materials, 271 (2021) 121584.
[34] J. Rahman, K.S. Ahmed, N.I. Khan, K. Islam, S. Mangalathu, Data-driven shear strength prediction of steel fiber reinforced concrete beams using machine learning approach, Engineering Structures, 233 (2021) 111743.
[35] H. Sabetifar, M. Nematzadeh, An evolutionary approach for formulation of ultimate shear strength of steel fiber-reinforced concrete beams using gene expression programming, Structures, 34 (2021) 4965-4976.
[36] A. Ashrafian, E. Panahi, S. Salehi, M.J. Taheri Amiri, On the implementation of the interpretable data-intelligence model for designing service life of structural concrete in a marine environment, Ocean Engineering, 256 (2022) 111523.
[37] A. Ashrafian, E. Panahi, S. Salehi, M. Karoglou, P.G. Asteris, Mapping the strength of agro-ecological lightweight concrete containing oil palm by-product using artificial intelligence techniques, Structures, 48 (2023) 1209-1229.
[38] J.H. Friedman, Multivariate Adaptive Regression Splines, The Annals of Statistics, 19(1) (1991) 1-67.
[39] M. Nasir, A. Sadollah, Y.H. Choi, J.H. Kim, A comprehensive review on water cycle algorithm and its applications, Neural Computing and Applications, 32(23) (2020) 17433-17488.
[40] H. Eskandar, A. Sadollah, A. Bahreininejad, M. Hamdi, Water cycle algorithm – A novel metaheuristic optimization method for solving constrained engineering optimization problems, Computers & Structures, 110-111 (2012) 151-166.
[41] L. Arnaud, E. Gourlay, Experimental study of parameters influencing mechanical properties of hemp concretes, Construction and Building Materials, 28(1) (2012) 50-56.
[42] R. del Valle-Zermeño, J.E. Aubert, A. Laborel-Préneron, J. Formosa, J.M. Chimenos, Preliminary study of the mechanical and hygrothermal properties of hemp-magnesium phosphate cements, Construction and Building Materials, 105 (2016) 62-68.
[43] M.R. Ahmad, B. Chen, M.A. Haque, S.F. Ali Shah, Development of a sustainable and innovant hygrothermal bio-composite featuring the enhanced mechanical properties, Journal of Cleaner Production, 229 (2019) 128-143.
[44] M.R. Ahmad, B. Chen, Influence of type of binder and size of plant aggregate on the hygrothermal properties of bio-concrete, Construction and Building Materials, 251 (2020) 118981.
[45] M.R. Ahmad, B. Chen, M.A. Haque, S.F.A. Shah, Utilization of industrial and hazardous waste materials to formulate energy-efficient hygrothermal bio-composites, Journal of Cleaner Production, 250 (2020) 119469.
[46] A. Ashrafian, A.A. Shahmansouri, H. Akbarzadeh Bengar, A. Behnood, Post-fire behavior evaluation of concrete mixtures containing natural zeolite using a novel metaheuristic-based machine learning method, Archives of Civil and Mechanical Engineering, 22 (2022) 101.
[47] W. Zhang, A.T.C. Goh, Multivariate adaptive regression splines and neural network models for prediction of pile drivability, Geoscience Frontiers, 7(1) (2016) 45-52.
[48] C. Niyigena, S. Amziane, A. Chateauneuf, L. Arnaud, L. Bessette, F. Collet, C. Lanos, G. Escadeillas, M. Lawrence, C. Magniont, S. Marceau, S. Pavia, U. Peter, V. Picandet, M. Sonebi, P. Walker, Variability of the mechanical properties of hemp concrete, Materials Today Communications, 7 (2016) 122-133.