[1] J. Franklin, S. Zongqi, B. Atkinson, P. Meredith, F. Rummel, W. Mueller, Y. Nishimatsu, H. Takahahsi, L. Costin, A. Ingraffea, Suggested methods for determining the fracture toughness of rock, International Journal of Rock Mechanics and Mining & Geomechanics Abstracts, 25(2) (1988).
[2] T. Funatsu, N. Shimizu, M. Kuruppu, K. Matsui, Evaluation of mode I fracture toughness assisted by the numerical determination of K-resistance, Rock Mechanics and Rock Engineering, 48 (2015) 143-157.
[3] M.D. Kuruppu, Y. Obara, M.R. Ayatollahi, K. Chong, T. Funatsu, ISRM-suggested method for determining the mode I static fracture toughness using semi-circular bend specimen, Rock Mechanics and Rock Engineering, 47 (2014) 267-274.
[4] M. Wei, F. Dai, N. Xu, T. Zhao, K. Xia, Experimental and numerical study on the fracture process zone and fracture toughness determination for ISRM-suggested semi-circular bend rock specimen, Engineering Fracture Mechanics, 154 (2016) 43-56.
[5] M.-D. Wei, F. Dai, N.-W. Xu, T. Zhao, Y. Liu, An experimental and theoretical assessment of semi-circular bend specimens with chevron and straight-through notches for mode I fracture toughness testing of rocks, International Journal of Rock Mechanics and Mining Sciences, 99 (2017) 28-38.
[6] S. Ghouli, B. Bahrami, M.R. Ayatollahi, T. Driesner, M. Nejati, Introduction of a scaling factor for fracture toughness measurement of rocks using the semi-circular bend test, Rock Mechanics and Rock Engineering, 54(8) (2021) 4041-4058.
[7] M. Aliha, A. Bahmani, Rock fracture toughness study under mixed mode I/III loading, Rock Mechanics and Rock Engineering, 50 (2017) 1739-1751.
[8] M.-D. Wei, F. Dai, N.-W. Xu, Y. Liu, T. Zhao, Fracture prediction of rocks under mode I and mode II loading using the generalized maximum tangential strain criterion, Engineering fracture mechanics, 186 (2017) 21-38.
[9] R. Fowell, J. Hudson, C. Xu, X. Zhao, Suggested method for determining mode I fracture toughness using cracked chevron notched Brazilian disc (CCNBD) specimens, in: International Journal of Rock Mechanics and Mining Sciences and Geomechanics Abstracts, 1995, pp. 322A.
[10] M.D. Wei, F. Dai, Y. Liu, N.W. Xu, T. Zhao, An experimental and theoretical comparison of CCNBD and CCNSCB specimens for determining mode I fracture toughness of rocks, Fatigue & Fracture of Engineering Materials & Structures, 41(5) (2018) 1002-1018.
[11] M. Kuruppu, Fracture toughness measurement using chevron notched semi-circular bend specimen, International journal of fracture, 86(4) (1997) L33-L38.
[12] H. Amrollahi, A. Baghbanan, H. Hashemolhosseini, Measuring fracture toughness of crystalline marbles under modes I and II and mixed mode I–II loading conditions using CCNBD and HCCD specimens, International Journal of Rock Mechanics and Mining Sciences, 48(7) (2011) 1123-1134.
[13] C.-H. Chen, C.-S. Chen, J.-H. Wu, Fracture toughness analysis on cracked ring disks of anisotropic rock, Rock Mechanics and Rock Engineering, 41 (2008) 539-562.
[14] Z. Zhang, An empirical relation between mode I fracture toughness and the tensile strength of rock, International journal of rock mechanics and mining sciences, 39(3) (2002) 401-406.
[15] A. Muñoz-Ibáñez, J. Delgado-Martín, M. Costas, J. Rabuñal-Dopico, J. Alvarellos-Iglesias, J. Canal-Vila, Pure Mode I Fracture Toughness Determination in Rocks Using a Pseudo-Compact Tension (p CT) Test Approach, Rock Mechanics and Rock Engineering, 53(7) (2020) 3267-3285.
[16] J. Delgado-Martin, A. Muñoz-Ibañez, M. Herbon-Penabad, R. Juncosa-Rivera, Impact of saturating fluids on mode-I fracture toughness of a porous siliceous sandstone and a granitic rock, in: AGU Fall Meeting Abstracts, 2019, pp. MR41C-0064.
[17] A. Muñoz-Ibáñez, J. Delgado-Martín, R. Juncosa-Rivera, Size effect and other effects on mode I fracture toughness using two testing methods, International Journal of Rock Mechanics and Mining Sciences, 143 (2021) 104785.
[18] Y. Obara, K. Nakamura, S. Yoshioka, A. Sainoki, A. Kasai, Crack front geometry and stress intensity factor of semi-circular bend specimens with straight through and chevron notches, Rock Mechanics and Rock Engineering, 53 (2020) 723-738.
[19] A. Standard, Standard test method for linear-elastic plane-strain fracture toughness KIc of metallic materials, ASTM Book of Standards, (2012).
[20] T. Backers, O. Stephansson, ISRM suggested method for the determination of mode II fracture toughness, in: The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007-2014, Springer, 2014, pp. 45-56.
[21] T. Backers, N. Fardin, G. Dresen, O. Stephansson, Effect of loading rate on mode I fracture toughness, roughness and micromechanics of sandstone, International Journal of Rock Mechanics and Mining Sciences, 40(3) (2003) 425-433.
[22] C. Martin, N. Chandler, The progressive fracture of Lac du Bonnet granite, in: International journal of rock mechanics and mining sciences & geomechanics abstracts, Elsevier, 1994, pp. 643-659.
[23] Q. Xie, X. Liu, S. Li, K. Du, F. Gong, X. Li, Prediction of mode I fracture toughness of shale specimens by different fracture theories considering size effect, Rock Mechanics and Rock Engineering, 55(11) (2022) 7289-7306.
[24] S. Zhang, D. An, X. Zhang, B. Yu, H. Wang, Research on size effect of fracture toughness of sandstone using the center-cracked circular disc samples, Engineering Fracture Mechanics, 251 (2021) 107777.
[25] S. Zhang, H. Wang, X. Li, X. Zhang, D. An, B. Yu, Experimental study on development characteristics and size effect of rock fracture process zone, Engineering Fracture Mechanics, 241 (2021) 107377.
[26] E. Hoek, E.T. Brown, Practical estimates of rock mass strength, International journal of rock mechanics and mining sciences, 34(8) (1997) 1165-1186.
[27] S.S. Jeong, K. Nakamura, S. Yoshioka, Y. Obara, M. Kataoka, Fracture toughness of granite measured using micro to macro scale specimens, Procedia engineering, 191 (2017) 761-767.
[28] M. Nejati, S. Ghouli, M.R. Ayatollahi, Crack tip asymptotic field and K-dominant region for anisotropic semi-circular bend specimen, Theoretical and Applied Fracture Mechanics, 109 (2020) 102640.
[29] A.C. Correas, M. Corrado, A. Sapora, P. Cornetti, Size-effect on the apparent tensile strength of brittle materials with spherical cavities, Theoretical and Applied Fracture Mechanics, 116 (2021) 103120.
[30] Z. Hashin, Finite thermoelastic fracture criterion with application to laminate cracking analysis, Journal of the Mechanics and Physics of Solids, 44(7) (1996) 1129-1145.
[31] M. Nasseri, B. Mohanty, R. Young, Fracture toughness measurements and acoustic emission activity in brittle rocks, Pure and Applied Geophysics, 163 (2006) 917-945.
[32] J. Zhang, Investigation of Relation between Fracture Scale and Acoustic Emission Time‐Frequency Parameters in Rocks, Shock and Vibration, 2018(1) (2018) 3057628.