[1] T. Mogami, A statistical approach to the mechanics of granular materials, Soils and Foundations, 5(2) (1965) 26-36.
[2] P.A. Cundall, A computer model for simulating progressive, large-scale movement in blocky rock system, in: Proceedings of the International Symposium on Rock Mechanics, 1971, 1971.
[3] P.A. Cundall, O.D. Strack, A discrete numerical model for granular assemblies, geotechnique, 29(1) (1979) 47-65.
[4] R.A. Gingold, J.J. Monaghan, Smoothed particle hydrodynamics: theory and application to non-spherical stars, Monthly notices of the royal astronomical society, 181(3) (1977) 375-389.
[5] L.B. Lucy, A numerical approach to the testing of the fission hypothesis, The astronomical journal, 82 (1977) 1013-1024.
[6] A.V. Potapov, M.L. Hunt, C.S. Campbell, Liquid–solid flows using smoothed particle hydrodynamics and the discrete element method, Powder Technology, 116(2–3) (2001) 204-213.
[7] P.W. Cleary, M. Sinnott, R. Morrison, Prediction of slurry transport in SAG mills using SPH fluid flow in a dynamic DEM based porous media, Minerals Engineering, 19(15) (2006) 1517-1527.
[8] J.W. Fernandez, P.W. Cleary, M.D. Sinnott, R.D. Morrison, Using SPH one-way coupled to DEM to model wet industrial banana screens, Minerals Engineering, 24(8) (2011) 741-753.
[9] F.M. Katubilwa, M.H. Moys, Effects of filling degree and viscosity of slurry on mill load orientation, Minerals Engineering, 24(13) (2011) 1502-1512.
[10] M. Sinnott, P.W. Cleary, R.D. Morrison, Slurry flow in a tower mill, Minerals Engineering, 24(2) (2011) 152-159.
[11] P.W. Cleary, R.D. Morrison, Prediction of 3D slurry flow within the grinding chamber and discharge from a pilot scale SAG mill, Minerals Engineering, 39 (2012) 184-195.
[12] Y.J. Huang, O.J. Nydal, Coupling of discrete-element method and smoothed particle hydrodynamics for liquid-solid flows, Theor. Appl. Mech. Lett., 2(1) (2012).
[13] X. Sun, M. Sakai, Y. Yamada, Three-dimensional simulation of a solid–liquid flow by the DEM–SPH method, Journal of Computational Physics, 248(0) (2013) 147-176.
[14] M. Robinson, S. Luding, M. Ramaioli, SPH-DEM simulations of grain dispersion by liquid injection, in: AIP Conference Proceedings, 2013, pp. 1122-1125.
[15] M. Robinson, S. Luding, M. Ramaioli, Fluid-particle flow modelling and validation using two-way-coupled mesoscale SPH-DEM, eprint arXiv:1301.0752, 2013.
[16] M. Tak, D. Park, T. Park, Computational Coupled Method for Multiscale and Phase Analysis, Journal of Engineering Materials and Technology, 135(2) (2013).
[17] M. Robinson, M. Ramaioli, S. Luding, Fluid–particle flow simulations using two-way-coupled mesoscale SPH–DEM and validation, International journal of multiphase flow, 59 (2014) 121-134.
[18] P.W. Cleary, Prediction of coupled particle and fluid flows using DEM and SPH, Minerals Engineering, 73 (2015) 85-99.
[19] P.W. Cleary, M.D. Sinnott, Computational prediction of performance for a full scale Isamill: Part 2 – Wet models of charge and slurry transport, Minerals Engineering, 79 (2015) 239-260.
[20] T. Breinlinger, T.C. Kraft, Coupled discrete element and smoothed particle hydrodynamics simulations of the die filling process, Computational Particle Mechanics, 3(4) (2016) 505-511.
[21] D.M. Robb, S.J. Gaskin, J.-C. Marongiu, SPH-DEM model for free-surface flows containing solids applied to river ice jams, Journal of Hydraulic Research, 54(1) (2016) 27-40.
[22] M.D. Sinnott, P.W. Cleary, Particulate and water mixing in the feed box for a screen, Minerals Engineering, 109 (2017) 109-125.
[23] M.D. Sinnott, P.W. Cleary, R.D. Morrison, Combined DEM and SPH simulation of overflow ball mill discharge and trommel flow, Minerals Engineering, 108 (2017) 93-108.
[24] D. Markauskas, H. Kruggel-Emden, R. Sivanesapillai, H. Steeb, Comparative study on mesh-based and mesh-less coupled CFD-DEM methods to model particle-laden flow, Powder Technology, 305 (2017) 78-88.
[25] P.W. Cleary, J.E. Hilton, M.D. Sinnott, Modelling of industrial particle and multiphase flows, Powder Technology, 314 (2017) 232-252.
[26] F.K. Mulenga, Effects of slurry hold-up on the pool volume of a batch mill, Minerals Engineering, 111 (2017) 124-130.
[27] H. Tan, S. Chen, A hybrid DEM-SPH model for deformable landslide and its generated surge waves, Advances in Water Resources, 108 (2017) 256-276.
[28] D. Markauskas, H. Kruggel-Emden, V. Scherer, Numerical analysis of wet plastic particle separation using a coupled DEM-SPH method, Powder Technology, 325 (2018) 218-227.
[29] D. Markauskas, H. Kruggel-Emden, Coupled DEM-SPH simulations of wet continuous screening, Advanced Powder Technology, 30(12) (2019) 2997-3009.
[30] M. Jahani Chegeni, Combined DEM and SPH simulation of ball milling, Journal of Mining and Environment, 10(1) (2019) 151-161.
[31] K. Tsuji, M. Asai, Flid-solid multiphase flow simulator using a SPH-DEM coupled method in consideration of liquid bridge force related to water content, in: PARTICLES VI: proceedings of the VI International Conference on Particle-Based Methods: fundamentals and applications, CIMNE, 2019, pp. 668-679.
[32] J. Morris, S. Johnson, Dynamic simulations of geological materials using combined FEM/DEM/SPH analysis, Geomechanics and Geoengineering, 4(1) (2009) 91-101.
[33] R. Canelas, J.M. Dominguez, R.M.L. Ferreira, Coupling a Generalized DEM and an SPH Models Under a Heterogeneous Massively Parallel Framework, in: Congreso de Metodos Numericos en Ingenieria, Lisbon, Portugal, 2013.
[34] K. Wu, D. Yang, N. Wright, A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure, Computers & Structures, 177 (2016) 141-161.
[35] M. Sarfaraz, A. Pak, An integrated SPH-polyhedral DEM algorithm to investigate hydraulic stability of rock and concrete blocks: Application to cubic armours in breakwaters, Engineering Analysis with Boundary Elements, 84 (2017) 1-18.
[36] S. Mintu, D. Molyneux, Simulation of ice-structure interactions using a coupled SPH-DEM method, in: OTC Arctic Technology Conference, Offshore Technology Conference, 2018.
[37] W.-J. Xu, X.-Y. Dong, W.-T. Ding, Analysis of fluid-particle interaction in granular materials using coupled SPH-DEM method, Powder Technology, 353 (2019) 459-472.
[38] S. Ji, X. Chen, L. Liu, Coupled DEM-SPH method for interaction between dilated polyhedral particles and fluid, Mathematical Problems in Engineering, 2019 (2019).
[39] J.P. Morris, P.J. Fox, Y. Zhu, Modeling low Reynolds number incompressible flows using SPH, J. Comput. Phys., 136(1) (1997) 214-226.
[40] Y. Zhu, P.J. Fox, J.P. Morris, A pore-scale numerical model for flow through porous media, International Journal for Numerical and Analytical Methods in Geomechanics, 23(9) (1999) 881-904.
[41] M. Ebrahimi, P. Gupta, M. Robinson, M. Crapper, M. Ramaioli, J.Y. Ooi, Comparison of coupled DEM-CFD and SPH-DEM methods in single and multiple particle sedimentation test cases, in: PARTICLES III: proceedings of the III International Conference on Particle-Based Methods: fundamentals and applications, CIMNE, 2013, pp. 322-334.
[42] B. Nassauer, T. Liedke, M. Kuna, Development of a coupled discrete element (DEM)–smoothed particle hydrodynamics (SPH) simulation method for polyhedral particles, Computational Particle Mechanics, 3(1) (2016) 95-106.
[43] S. Natsui, A. Sawada, K. Terui, Y. Kashihara, T. Kikuchi, R.O. Suzuki, DEM-SPH study of molten slag trickle flow in coke bed, Chemical Engineering Science, 175 (2018) 25-39.
[44] J. Chen, O. Orozovic, K. Williams, J. Meng, C. Li, A coupled DEM-SPH model for moisture migration in unsaturated granular material under oscillation, International Journal of Mechanical Sciences, 169 (2020) 105313.
[45] X. Li, X. Chu, D. Sheng, A saturated discrete particle model and characteristic‐based SPH method in granular materials, International journal for numerical methods in engineering, 72(7) (2007) 858-882.
[46] U. El Shamy, S.F. Sizkow, Coupled smoothed particle hydrodynamics-discrete element method simulations of soil liquefaction and its mitigation using gravel drains, Soil Dynamics and Earthquake Engineering, 140 (2021) 106460.
[47] U. El Shamy, S.F. Sizkow, Coupled SPH-DEM simulations of liquefaction-induced flow failure, Soil Dynamics and Earthquake Engineering, 144 (2021) 106683.
[48] S.F. Sizkow, U. El Shamy, SPH-DEM simulations of saturated granular soils liquefaction incorporating particles of irregular shape, Computers and Geotechnics, 134 (2021) 104060.
[49] C.P.K. Helambage, W. Senadeera, Y. Gu, R.J. Brown, B.W. Pearce, A coupled SPH-DEM model for fluid and solid mechanics of apple parenchyma cells during drying, in: Proceedings of the Eighteenth Australasian Fluid Mechanics Conference, 2012.
[50] H. Karunasena, W. Senadeera, Y. Gu, R.J. Brown, A coupled SPH-DEM model for micro-scale structural deformations of plant cells during drying, Applied Mathematical Modelling, 38(15-16) (2014) 3781-3801.
[51] A. Fakhimi, M. Lanari, DEM–SPH simulation of rock blasting, Computers and Geotechnics, 55(0) (2014) 158-164.
[52] P.W. Cleary, G.G. Pereira, V. Lemiale, C. Delle Piane, M. Ben Clennell Multiscale model for predicting shear zone structure and permeability in deforming rock, Computational Particle Mechanics, 3(2) (2016) 179-199.
[53] H.-N. Polwaththe-Gallage, S.C. Saha, E. Sauret, R. Flower, W. Senadeera, Y. Gu, SPH-DEM approach to numerically simulate the deformation of three-dimensional RBCs in non-uniform capillaries, Biomedical engineering online, 15(2) (2016) 349-370.
[54] M.D. Sinnott, P.W. Cleary, S.M. Harrison, Peristaltic transport of a particulate suspension in the small intestine, Applied Mathematical Modelling, 44 (2017) 143-159.
[55] P.A. Cundall, Distinct element models of rock and soil structure, Analytical and Computational Methods in Engineering Rock Mechanics, (1987) 129-163.
[56] T.B. Anderson, R. Jackson, Fluid mechanical description of fluidized beds. Equations of motion, Industrial & Engineering Chemistry Fundamentals, 6(4) (1967) 527-539.
[57] J.J. Monaghan, Smoothed particle hydrodynamics, Annual review of astronomy and astrophysics, 30 (1992) 543-574.
[58] M. Kelager, Lagrangian fluid dynamics using smoothed particle hydrodynamics, University of Copenhagen: Department of Computer Science, 2 (2006).
[59] H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Advances in computational Mathematics, 4(1) (1995) 389-396.
[60] S. Ergun, Fluid flow through packed columns, Chem. Eng. Prog., 48 (1952) 89-94.
[61] C.Y. Wen, Mechanics of fluidization, in: Chem. Eng. Prog., Symp. Ser., 1966, pp. 100-111.
[62] P.C. Rouse, Characterisation and modelling of a uniformly graded, well-rounded coarse sand, University of British Columbia, 2005.