[1] K. Suzuki, A. Watanabe, E. Saeki, Development of U-shaped steel damper for seismic isolation system, Nippon Steel Technical Report, 92 (2005) 56-61.
[2] J. Franco, X. Cahís, L. Gracia, F. López, Experimental testing of a new anti-seismic dissipator energy device based on the plasticity of metals, Engineering structures, 32(9) (2010) 2672-2682.
[3] S. Maleki, S. Bagheri, Pipe damper, Part I: Experimental and analytical study, Journal of Constructional Steel Research, 66(8-9) (2010) 1088-1095.
[4] S. Maleki, S. Bagheri, Pipe damper, Part II: Application to bridges, Journal of Constructional Steel Research, 66(8-9) (2010) 1096-1106.
[5] S.M. Zahrai, M. Jalali, Experimental and analytical investigations on seismic behavior of ductile steel knee braced frames, Steel and Composite Structures, 16(1) (2014) 1-21.
[6] A. Cheraghi, S.M. Zahrai, Innovative multi-level control with concentric pipes along brace to reduce seismic response of steel frames, Journal of Constructional Steel Research, 127 (2016) 120-135.
[7] S.M. Zahrai, A. Cheraghi, Reducing seismic vibrations of typical steel buildings using new multi-level yielding pipe damper, International Journal of Steel Structures, 17(3) (2017) 983-998.
[8] R. Aghlara, M.M. Tahir, A passive metallic damper with replaceable steel bar components for earthquake protection of structures, Engineering structures, 159 (2018) 185-197.
[9] C.L. Lee, Y.P. Wang, M.Y. Cai, Y.T. Kuan, G.H. Huang, An Experimental Verification of Seismic Structural Control: Using InāPlane Oval Dampers, ce/papers, 3(3-4) (2019) 469-474.
[10] M. Jarrah, H. Khezrzadeh, M. Mofid, K. Jafari, Experimental and numerical evaluation of piston metallic damper (PMD), Journal of Constructional Steel Research, 154 (2019) 99-109.
[11] Z. Li, G. Shu, Z. Huang, Development and cyclic testing of an innovative shear-bending combined metallic damper, Journal of Constructional Steel Research, 158 (2019) 28-40.
[12] W. Guo, C. Ma, Y. Yu, D. Bu, C. Zeng, Performance and optimum design of replaceable steel strips in an innovative metallic damper, Engineering Structures, 205 (2020) 110118.
[13] G. Pachideh, M. Kafi, M. Gholhaki, Evaluation of cyclic performance of a novel bracing system equipped with a circular energy dissipater, in: Structures, Elsevier, 2020, pp. 467-481.
[14] G. Pachideh, M. Gholhaki, R. Lashkari, O. Rezayfar, Behavior of BRB Equipped with a Casing Comprised of Steel and Polyamide, Institution of Civil Engineers-Structures and Buildings, (2020).
[15] G. Pachideh, M. Gholhaki, M. Kafi, Experimental and numerical evaluation of an innovative diamond-scheme bracing system equipped with a yielding damper, Steel and Composite Structures, 36(2) (2020) 197.
[16] Computers and Structures. Inc. CSI Analysis Reference Manual for SAP2000 Ca, Structures I, Berkley, California. 2020.
[17] M. Ebadi Jamkhaneh, A.H. Ebrahimi, M. Shokri Amiri, Experimental and numerical investigation of steel moment resisting frame with U-shaped metallic yielding damper, International Journal of Steel Structures, 19(3) (2019) 806-818.
[18] Applied Technology Council. Guidelines for cyclic seismic testing of components of steel structures. ATC-24. 1992.
[19] Y. Ohtori, R. Christenson, B. Spencer, S. Dyke, Benchmark control problems for seismically excited nonlinear buildings, in: Journal of engineering mechanics, 2004, pp. 366-385.
[20] Computers and Structures. Inc. CSI Analysis Reference Manual for SAP2000, I. Structures, Berkley, California. 2020., in.
[21] S.A. Mousavi, S.M. Zahrai, A.A. Pasand, Drift-based seismic design procedure for Buckling Restrained Braced Frames, in: Structures, Elsevier, 2021, pp. 62-74.
[22] M. Fragiadakis, N.D. Lagaros, M. Papadrakakis, Performance-based multiobjective optimum design of steel structures considering life-cycle cost, Structural and Multidisciplinary Optimization, 32(1) (2006) 1-11.