The use of steel waste as granular stone materials in stone columns along with geotextile in the direction of sustainable development

Document Type : Research Article


1 Department of Civil Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran

2 azad eslami

3 Department of Civil Engineering, University of Isfahan, Isfahan, Iran


The materials that make up the columns are generally sand, gravel or crushed stone, which are sometimes called stone or gravel columns. The implementation of this system is widely used in geotechnical engineering to increase bearing capacity and reduce settlement. The use of industrial wastes such as steel slag in soil stabilization can be an environmentally friendly, sustainable and cost-effective technique for solid waste disposal. Surveys show that many studies have been conducted on the bearing capacity and settlement of improved soils with stone columns with or without geosynthetic cover. However, a very limited number of studies on conventional stone columns and steel slag columns with or without confinement and geosynthetic cover have been investigated in laboratories under lateral loading. In this article, the lateral load capacity of steel slag granular sand-column environments has been investigated using a large-scale direct shear test device. The effect of column material type (steel slag and sand), column diameter, and changing the type of geosynthetic coating on the shear strength parameters of sand-column composites has been investigated. The experimental results show the effectiveness of using steel slag columns to improve the lateral load performance of sand, so that by increasing the diameter of the column in the sand environment from 5 to 25 cm, the percentage of maximum stress increases by 20 to 70% and also the percentage of internal friction angle increases by 200 Up to 800% compared to the sand environment without slag column was observed.


Main Subjects

[1] J. Patricio،  Y. Kalmykova،  L. Rosado،  A method and databases for estimating detailed industrial waste generation at different scales–with application to biogas industry development،  Journal of Cleaner Production،  246 (2020) 118959.
[2] M. Salehi،  M. Bayat،  M. Saadat،  M. Nasri،  Experimental study on mechanical properties of cement-stabilized soil blended with crushed stone waste،  KSCE Journal of Civil Engineering،  25(6) (2021) 1974-1984.
[3] A.A. Ashango،  N.R. Patra،  Behavior of expansive soil treated with steel slag،  rice husk ash،  and lime،  Journal of Materials in Civil Engineering،  28(7) (2016) 06016008.
[4] H.M. Jafer،  W. Atherton،  M. Sadique،  F. Ruddock،  E. Loffill،  Development of a new ternary blended cementitious binder produced from waste materials for use in soft soil stabilisation،  Journal of Cleaner Production،  172 (2018) 516-528.
[5] M. ShahriarKian،  S. Kabiri،  M. Bayat،  Utilization of zeolite to improve the behavior of cement-stabilized soil،  International Journal of Geosynthetics and Ground Engineering،  7(2) (2021) 1-11.
[6] A. Sharma،  R.K. Sharma،  Strength and drainage characteristics of poor soils stabilized with construction demolition waste،  Geotechnical and Geological engineering،  38 (2020) 4753-4760.
[7] R. Sharma،  Utilization of FLY ash and waste ceramic in improving characteristics of clayey soil: a laboratory study،  Geotechnical and Geological Engineering،  38 (2020) 5327-5340.
[8] K.S. Wani،  B. Mir،  Stabilization of weak dredged soils by employing waste boulder crusher dust: a laboratory study،  Geotechnical and Geological Engineering،  38(6) (2020) 6827-6842.
[9] D. Yang،  A. Sasaki،  M. Endo،  Reclamation of a waste arsenic-bearing gypsum as a soil conditioner via acid treatment and subsequent Fe (II) As stabilization،  Journal of Cleaner Production،  217 (2019) 22-31.
[10] T. Zhang،  S. Liu،  H. Zhan،  C. Ma،  G. Cai،  Durability of silty soil stabilized with recycled lignin for sustainable engineering materials،  Journal of Cleaner Production،  248 (2020) 119293.
[11] S.C. Bostanci،  Use of waste marble dust and recycled glass for sustainable concrete production،  Journal of Cleaner Production،  251 (2020) 119785.
[12] D. Foti،  Use of recycled waste pet bottles fibers for the reinforcement of concrete،  Composite Structures،  96 (2013) 396-404.
[13] M. Jalal،  N. Nassir،  H. Jalal،  Waste tire rubber and pozzolans in concrete: a trade-off between cleaner production and mechanical properties in a greener concrete،  Journal of Cleaner Production،  238 (2019) 117882.
[14] F. Mahdi،  H. Abbas،  A.A. Khan،  Flexural،  shear and bond strength of polymer concrete utilizing recycled resin obtained from post consumer PET bottles،  Construction and Building Materials،  44 (2013) 798-811.
[15] K.G. Tonet،  J.P. Gorninski،  Polymer concrete with recycled PET: The influence of the addition of industrial waste on flammability،  Construction and building materials،  40 (2013) 378-389.
[16] F. Kehagia،  Skid resistance performance of asphalt wearing courses with electric arc furnace slag aggregates،  Waste Management & Research،  27(3) (2009) 288-294.
[17] J. O’Connor،  T.B.T. Nguyen،  T. Honeyands،  B. Monaghan،  D. O’Dea،  J. Rinklebe،  A. Vinu،  S.A. Hoang،  G. Singh،  M. Kirkham،  Production،  characterisation،  utilisation،  and beneficial soil application of steel slag: A review،  Journal of Hazardous Materials،   (2021) 126478.
[18] C. Shi،  Steel slag—its production،  processing،  characteristics،  and cementitious properties،  Journal of materials in civil engineering،  16(3) (2004) 230-236.
[19] H. Kumar،  S. Varma،  A review on utilization of steel slag in hot mix asphalt،  International Journal of Pavement Research and Technology،  14(2) (2021) 232-242.
[20] M. Rezaei-Hosseinabadi،  M. Bayat،  B. Nadi،  A. Rahimi،  Utilisation of steel slag as a granular column to enhance the lateral load capacity of soil،  Geomechanics and Geoengineering،   (2021) 1-11.
[21] H. Poh،  G.S. Ghataora،  N. Ghazireh،  Soil stabilization using basic oxygen steel slag fines،  Journal of materials in Civil Engineering،  18(2) (2006) 229-240.
[22] W. Shen،  M. Zhou،  W. Ma،  J. Hu،  Z. Cai،  Investigation on the application of steel slag–fly ash–phosphogypsum solidified material as road base material،  Journal of hazardous materials،  164(1) (2009) 99-104.
[23] I. Akinwumi،  J. Adeyeri،  O. Ejohwomu،  Effects of steel slag addition on the plasticity،  strength،  and permeability of lateritic soil،  in:  ICSDEC 2012: Developing the Frontier of Sustainable Design،  Engineering،  and Construction،  2013،  pp. 457-464.
[24] J. Wu،  Q. Liu،  Y. Deng،  X. Yu،  Q. Feng،  C. Yan،  Expansive soil modified by waste steel slag and its application in subbase layer of highways،  Soils and Foundations،  59(4) (2019) 955-965.
[25] L. Lang،  C. Song،  L. Xue،  B. Chen،  Effectiveness of waste steel slag powder on the strength development and associated micro-mechanisms of cement-stabilized dredged sludge،  Construction and Building Materials،  240 (2020) 117975.
[26] C. Cengiz،  I.E. Kilic،  E. Guler،  On the shear failure mode of granular column embedded unit cells subjected to static and cyclic shear loads،  Geotextiles and Geomembranes،  47(2) (2019) 193-202.
[27] C. Cengiz،  E. Guler،  Sample preparation method for large scale shear testing of soft-clay and granular-column composites،  MethodsX،  7 (2020) 100939.
[28] S.-H. Chong،  J.-Y. Kim،  Nonlinear vibration analysis of the resonant column test of granular materials،  Journal of Sound and Vibration،  393 (2017) 216-228.
[29] I. Hosseinpour،  M. Almeida،  M. Riccio،  Full-scale load test and finite-element analysis of soft ground improved by geotextile-encased granular columns،  Geosynthetics International،  22(6) (2015) 428-438.
[30] S. Murugesan،  K. Rajagopal،  Shear load tests on stone columns with and without geosynthetic encasement،  Geotechnical Testing Journal،  32(1) (2009) 76-85.
[31] S.R. Mohapatra،  K. Rajagopal،  J. Sharma،  Direct shear tests on geosynthetic-encased granular columns،  Geotextiles and Geomembranes،  44(3) (2016) 396-405.
[32] K.-H. Xie،  M.-M. Lu،  A.-F. Hu،  G.-H. Chen،  A general theoretical solution for the consolidation of a composite foundation،  Computers and Geotechnics،  36(1-2) (2009) 24-30.
[33] I. Hosseinpour،  C. Soriano،  M.S. Almeida،  A comparative study for the performance of encased granular columns،  Journal of Rock Mechanics and Geotechnical Engineering،  11(2) (2019) 379-388.
[34] E.R. Orekanti،  G.V. Dommaraju،  Load-settlement response of geotextile encased laterally reinforced granular piles in expansive soil under compression،  International Journal of Geosynthetics and Ground Engineering،  5(3) (2019) 1-8.
[35] P. Verma،  A. Sahu،  Effect of grouted granular column on the load carrying capacity of the expansive soil،  International Journal of Recent Technology and Engineering،  8(3) (2019) 2606-2612.
[36] M. Almeida،  I. Hosseinpour،  M. Riccio،  Performance of a geosynthetic-encased column (GEC) in soft ground: numerical and analytical studies،  Geosynthetics international،  20(4) (2013) 252-262.
[37] S. Aryal،  P. Kolay،  Long-term durability of ordinary Portland cement and polypropylene fibre stabilized kaolin soil using wetting–drying and freezing–thawing test،  International Journal of Geosynthetics and Ground Engineering،  6(1) (2020) 1-15.
[38] S.K. Dash،  M.C. Bora،  Influence of geosynthetic encasement on the performance of stone columns floating in soft clay،  Canadian Geotechnical Journal،  50(7) (2013) 754-765.
[39] J. Jayarajan،  R. Karpurapu،  Settlement analysis of geosynthetic encased granular column treated soft clay deposits،  International Journal of Geotechnical Engineering،  14(5) (2020) 473-489.
[40] S. Murugesan،  K. Rajagopal،  Model tests on geosynthetic-encased stone columns،  Geosynthetics International،  14(6) (2007) 346-354.
[41] K. Deb،  S. Shiyamalaa،  Effect of clogging on rate of consolidation of stone column–improved ground by considering particle migration،  International Journal of Geomechanics،  16(1) (2016) 04015017.
[42] S. Pal،  K. Deb،  Postearthquake reconsolidation settlement of stone column-treated liquefiable sand،  International Journal of Geomechanics،  20(10) (2020) 04020183.
[43] S. Pal،  K. Deb،  Filtration performance of geotextile encasement to minimize the clogging of stone column during soil liquefaction،  Geotextiles and Geomembranes،  49(3) (2021) 771-788.
[44] M.S. Almeida،  I. Hosseinpour،  M. Riccio،  D. Alexiew،  Behavior of geotextile-encased granular columns supporting test embankment on soft deposit،  Journal of Geotechnical and Geoenvironmental Engineering،  141(3) (2015) 04014116.
[45] J. Jayarajan،  R. Karpurapu،  Bearing capacity and settlement response of ordinary and geosynthetic encased granular columns in soft clay soils: analysis and design charts،  Indian Geotechnical Journal،  51(2) (2021) 237-253.
[46] M. Ghazavi،  A.E. Yamchi،  J.N. Afshar،  Bearing capacity of horizontally layered geosynthetic reinforced stone columns،  Geotextiles and Geomembranes،  46(3) (2018) 312-318.
[47] G. Araujo،  E. Palmeira،  R. Cunha،  Behaviour of geosynthetic-encased granular columns in porous collapsible soil،  Geosynthetics International،  16(6) (2009) 433-451.
[48] Y.-S. Hong،  C.-S. Wu،  Y.-S. Yu،  Model tests on geotextile-encased granular columns under 1-g and undrained conditions،  Geotextiles and Geomembranes،  44(1) (2016) 13-27.
[49] I. Hosseinpour،  M. Riccio،  M.S. Almeida،  Numerical evaluation of a granular column reinforced by geosynthetics using encasement and laminated disks،  Geotextiles and Geomembranes،  42(4) (2014) 363-373.
[50] M. Khabbazian،  V. Kaliakin،  C. Meehan،  Numerical study of the effect of geosynthetic encasement on the behaviour of granular columns،  Geosynthetics International،  17(3) (2010) 132-143.
[51] S. Murugesan،  K. Rajagopal،  Studies on the behavior of single and group of geosynthetic encased stone columns،  Journal of Geotechnical and Geoenvironmental Engineering،  136(1) (2010) 129-139.
[52] C. Yoo،  S.-B. Kim،  Numerical modeling of geosynthetic-encased stone column-reinforced ground،  Geosynthetics International،  16(3) (2009) 116-126.
[53] E.A. Oluwasola،  M.R. Hainin،  M. Aziz،  Evaluation of asphalt mixtures incorporating electric arc furnace steel slag and copper mine tailings for road construction،  Transportation Geotechnics،  2 (2015) 47-55.
[54] A.B. Cerato،  A.J. Lutenegger،  Specimen size and scale effects of direct shear box tests of sands،  Geotechnical Testing Journal،  29(6) (2006) 507-516.
[55] A. Fakhimi،  H. Hosseinpour،  Experimental and numerical study of the effect of an oversize particle on the shear strength of mined-rock pile material،  Geotechnical Testing Journal،  34(2) (2011) 131-138.
[56] A.D. Orlando،  D.M. Hanes،  H.H. Shen،  Scaling effects in direct shear tests،  in:  AIP Conference Proceedings،  American Institute of Physics, (2009) 413-416.