Investigation of coupled steel plate shear wall behavior under lateral loading

Document Type : Research Article


1 Department of Civil Engineering, Amirkabir University of Technology, Tehran, Iran.

2 Department of civil engineering, Azad University of Qazvin, Qazvin, Iran.


Coupled steel plate shear wall (CSPSW) is an efficient system to withstand lateral forces, especially in regions with high risk of earthquakes. This system consists of two steel plate shear walls which are linked together with coupling beams at the floor levels. In this article to study the CSPSW behavior, two parameters have been investigated. One is the degree of coupling, which represents the level of interaction between the two piers and the other is the plastic strength of the coupled steel plate shear wall. 12 CSPSW models have been selected which differ in terms of the length and the characteristics of the coupled beam and the height of CSPSW. These models have been analyzed using nonlinear static method. To verify the results, Borello & Fahnestock verified numerical model has been used. The results from the numerical modeling shows that changing the length of the coupled beams, with the same stiffness has a significant impact on the degree of coupling, while it has little effect on the plastic strength of the CSPSW. Additionally, increasing the stiffness of the coupled beams results in an increase of the degree of coupling, as well as an increase of the base shear of CSPSW.