Document Type : Research Article
Authors
1 Civil Engineering Faculty, Sahand University of Technology
2 Civil Engineering Faculty, Sahand University of Technology, Tabriz
Abstract
Keywords
Main Subjects
[1] W. Zhou, L. Yang, G. Ma, X. Chang, Z. Lai, K. Xu, DEM analysis of the size effects on the behavior of crushable
granular materials, Granul. Matter, 18(3) (2016) 64.
[2] A. Gupta, Triaxial behaviour of rockfill materials, Electronic Journal of Geotechnical Engineering, 14 (2009).
[3] X. Zhang, B.A. Baudet, T. Yao, The influence of particle shape and mineralogy on the particle strength, breakage and
compressibility, International Journal of Geo-Engineering, 11(1) (2020) 1-10.
[4] P.V. Lade, J.A. Yamamuro, P.A. Bopp, Significance of particle crushing in granular materials, Journal of Geotechnical
Engineering, 122(4) (1996) 309-316.
[5] Y. Wang, S. Shao, Z. Wang, Effect of particle breakage and shape on the mechanical behaviors of granular materials,
Adv. Civil Eng., 2019 (2019) 7248427.
[6] Y. Li, Effects of particle shape and size distribution on the shear strength behavior of composite soils, B. Eng. Geol.
Environ., 72(3) (2013) 371-381.
[7] K. Miura, K. Maeda, M. Furukawa, S. Toki, Mechanical characteristics of sands with different primary properties,
Soils Found., 38(4) (1998) 159-172.
[8] G.-C. Cho, J. Dodds, J.C. Santamarina, Particle shape effects on packing density, stiffness, and strength: natural and
crushed sands, J. Geotech. Geoenviron., 132(5) (2006) 591-602.
[9] N. Altuhafi Fatin, R. Coop Matthew, N. Georgiannou Vasiliki, Effect of particle shape on the mechanical behavior of
natural sands, J. Geotech. Geoenviron., 142(12) (2016) 04016071.
[10] X. Wu, Y. Cai, S. Xu, Y. Zhuang, Q. Wang, Z. Wang, Effects of size and shape on the crushing strength of coral
sand particles under diametral compression test, B. Eng. Geol. Environ., 80(2) (2021) 1829-1839.
[11] T. Zhang, C. Zhang, J. Zou, B. Wang, F. Song, W. Yang, DEM exploration of the effect of particle shape on particle
breakage in granular assemblies, Comput. Geotech., 122 (2020) 103542.
[12] M.B. Cil, C. Sohn, G. Buscarnera, DEM Modeling of Grain Size Effect in Brittle Granular Soils, Journal of
Engineering Mechanics, 146(3) (2020) 04019138.
[13] A.A. Mirghasemi, L. Rothenburg, E.L. Matyas, Influence of particle shape on engineering properties of assemblies
of two-dimensional polygon-shaped particles, Géotechnique, 52(3) (2002) 209-217.
[14] M. Lu, G.R. McDowell, The importance of modelling ballast particle shape in the discrete element method, Granul.
Matter, 9(1) (2007) 69.
[15] S. Abedi, A.A. Mirghasemi, Particle shape consideration in numerical simulation of assemblies of irregularly shaped
particles, Particuology, 9(4) (2011) 387-397.
[16] G.R. McDowell, M.D. Bolton, D. Robertson, The fractal crushing of granular materials, J. Mech. Phys. Solids, 44(12)
(1996) 2079-2101.
[17] Y. Xiao, Y. Sun, H. Liu, F. Yin, Critical state behaviors of a coarse granular soil under generalized stress conditions,
Granul. Matter, 18(2) (2016) 17.
[18] Y. Xiao, Y. Sun, K.F. Hanif, A particle-breakage critical state model for rockfill material, Sci. China Tech. Sci.,
58(7) (2015) 1125-1136.
[19] M. Liu, Y. Gao, H. Liu, An elastoplastic constitutive model for rockfills incorporating energy dissipation of nonlinear
friction and particle breakage, International Journal for Numerical and Analytical Methods in Geomechanics, 38(9)
(2014) 935-960.
[20] A. Daouadji, P.-Y. Hicher, An enhanced constitutive model for crushable granular materials, International Journal
for Numerical and Analytical Methods in Geomechanics, 34(6) (2010) 555-580.
[21] D. Muir Wood, K. Maeda, Changing grading of soil: Effect on critical states, Acta Geotech., 3 (2008) 3-14.
[22] C.S. Chang, P.Y. Hicher, An elasto-plastic model for granular materials with microstructural consideration, Int. J.
Solids Struct., 42(14) (2005) 4258-4277.
[23] W. Salim, B. Indraratna, A new elastoplastic constitutive model for coarse granular aggregates incorporating particle
breakage, Can. Geotech. J., 41(4) (2004) 657-671.
[24] M.-P. Luong, M. Emami, Characterization of mechanical damage in granite, Fracture and Strucrural Integrity, 8(27)
(2014) 38-42.
[25] J. Atkinson, The Mechanics of Soils and Foundations (2nd ed.), CRC Press, 2007.
[26] J. Jaky, Pressure in silos, in: 2nd International Conference on Soil Mechanics and Foundation Engineering, 1948,
[27] J. Zhang, B. Zhang, Fractal pattern of particle crushing of granular geomaterials during one-dimensional
compression, Adv. Civil Eng., (2018) 2153971.
[28] D.L. Turcotte, Fractals and fragmentation, Journal of Geophysical Research: Solid Earth, 91(B2) (1986) 1921-1926.
[29] G.R. McDowell, M.D. Bolton, On the micromechanics of crushable aggregates, Géotechnique, 48(5) (1998) 667-
679.
[30] I. Einav, Breakage mechanics—Part I: Theory, J. Mech. Phys. Solids, 55(6) (2007) 1274-1297.
[31] M.R. Coop, K.K. Sorensen, T. Bodas Freitas, G. Georgoutsos, Particle breakage during shearing of a carbonate sand,
Géotechnique, 54(3) (2004) 157-163.
[32] W. Weibull, A statistical theory of the strength of materials, Generalstabens litografiska anstalts foĢrlag, Stockholm,
1939.
[33] Y. Nakata, Y. Kato, M. Hyodo, A.F.L. Hyde, H. Murata, One-dimensional compression behaviour of uniformly
graded sand related to single particle crushing strength, Soils Found., 41(2) (2001) 39-51.
[34] G. Mesri, B. Vardhanabhuti, Compression of granular materials, Can. Geotech. J., 46(4) (2009) 369-392.
[35] G.R. McDowell, On the yielding and plastic compression of sand, Soils Found., 42(1) (2002) 139-145.
[36] R.D. Holtz, W.D. Kovacs, An Introduction To Geotechnical Engineering, Prentice-Hall, New Jersey, 1981.
[37] A. Sharma, D. Penumadu, Role of particle shape in determining tensile strength and energy release in diametrical
compression of natural silica grains, Soils Found., 60(5) (2020) 1299-1311.
[38] N. Stark, A.E. Hay, R. Cheel, C.B. Lake, The impact of particle shape on the angle of internal friction and the
implications for sediment dynamics at a steep, mixed sand–gravel beach, Earth Surf. Dynam., 2(2) (2014) 469-480.
[39] ASTM-D7012-14e1, Standard Test Methods for Compressive Strength and Elastic Moduli of Intact Rock Core
Specimens under Varying States of Stress and Temperatures, in, ASTM International, West Conshohocken, PA, 2014.
[40] ASTM-D3967-16, Standard Test Method for Splitting Tensile Strength of Intact Rock Core Specimens, in, ASTM
International, West Conshohocken, PA, 2016.
[41] Z.T. Bieniawski, Engineering Rock Mass Classifications: A Complete Manual for Engineers and Geologists in
Mining, Civil, and Petroleum Engineering, Wiley, 1989.
[42] ASTM-D2845-08, Standard Test Method for Laboratory Determination of Pulse Velocities and Ultrasonic Elastic
Constants of Rock, in, ASTM International, West Conshohocken, PA, 2008.
[43] V. Hucka, B. Das, Brittleness determination of rocks by different methods, Int. J. Rock Mech. Min., 11(10) (1974)
389-392.
[44] P.J. Barrett, The shape of rock particles, a critical review, Sedimentology, 27(3) (1980) 291-303.
[45] M.C. Powers, A new roundness scale for sedimentary particles, Journal of Sedimentary Research, 23(2) (1953) 117-
119.
[46] ASTM-D2488, Standard practice for description and identification of soils, in, ASTM International, West
Conshohocken, PA, 2017.
[47] B. Indraratna, D. Ionescu, H.D. Christie, Shear behavior of railway ballast based on large-scale triaxial tests, J.
Geotech. Geoenviron., 124(5) (1998) 439-449.
[48] ASTM-D2435, Standard test methods for one-dimensional consolidation properties of soils using incremental
loading, in, ASTM International, West Conshohocken, PA, 2020.
[49] C. Sammis, G. King, R. Biegel, The kinematics of gouge deformation, Pure Appl. Geophys., 125(5) (1987) 777-812.
[50] ASTM-C1444-00, Standard Test Method for Measuring the Angle of Repose of Free-Flowing Mold Powders, in,
ASTM International, West Conshohocken, PA, 2000.
[51] K.L. Lee, I. Farhoomand, Compressibility and crushing of granular soil In anisotropic triaxial compression, Can.
Geotech. J., 4(1) (1967) 68-86.
[52] R. Marsal, Large scale testing of rockfill materials Journal of the Soil Mechanics and Foundations Division, 93(2)
(1967) 27-43.
[53] B.O. Hardin, Crushing of soil particles, Journal of Geotechnical Engineering, 111(10) (1985) 1177-1192.