[1] B. Shean, J. Cilliers, A review of froth flotation control, International Journal of Mineral Processing, 100(3-4) (2011) 57-71.
[2] G. Bonifazi, S. Serranti, F. Volpe, R. Zuco, Characterisation of flotation froth colour and structure by machine vision, Computers & Geosciences, 27(9) (2001) 1111-1117.
[3] M. Massinaei, Estimation of metallurgical parameters of flotation process from froth visual features, International Journal of Mining and Geo-Engineering, 49(1) (2015) 75-81.
[4] D. Moolman, J. Eksteen, C. Aldrich, J. Van Deventer, The significance of flotation froth appearance for machine vision control, International Journal of Mineral Processing, 48(3-4) (1996) 135-158.
[5] X.-M. Mu, J.-P. Liu, W.-H. Gui, Z.-H. Tang, C.-H. Yang, J.-Q. Li, Machine vision based flotation froth mobility analysis, in: Proceedings of the 29th Chinese Control Conference, IEEE, 2010, pp. 3012-3017.
[6] A. Mehrabi, N. Mehrshad, M. Massinaei, Machine vision based monitoring of an industrial flotation cell in an iron flotation plant, International Journal of Mineral Processing, 133 (2014) 60-66.
[7] K. Jani, H. Jari, L. Martti, H. Heikki, J. Miettunen, Image Analysis Based Control of Copper Flotation, IFAC Proceedings Volumes, 38(1) (2005) 229-234.
[8] J. Liu, W. Gui, Z. Tang, H. Hu, J. Zhu, Machine vision based production condition classification and recognition for mineral flotation process monitoring, International Journal of Computational Intelligence Systems, 6(5) (2013) 969-986.
[9] J. Kaartinen, J. Hätönen, H. Hyötyniemi, J. Miettunen, Machine-vision-based control of zinc flotation—a case study, Control Engineering Practice, 14(12) (2006) 1455-1466.
[10] L. Jinping, G. Weihua, T. Zhaohui, Flow velocity measurement and analysis based on froth image SIFT features and Kalman filter for froth flotation, Turkish Journal of Electrical Engineering and Computer Science, 21(Sup. 2) (2013) 2378-2396.
[11] Bai Y, J. Wang, and X. Hu, Froth Recognition Based on Machine Vision for Monitoring Coal Flotation Process, Journal of Residuals Science & Technology(2016).
[12] J. Kaartinen, H. Hyötyniemi, Determination of ore size distribution with image analysis, in: IASTED International Conference on Intelligent Systems and Control, Salzburg, Austria, June 25-27, 2003, IASTED, ACTA Press, 2003, pp. 406-411.
[13] A. Jahedsaravani, M. Marhaban, M. Massinaei, Prediction of the metallurgical performances of a batch flotation system by image analysis and neural networks, Minerals Engineering, 69 (2014) 137-145.
[14] C. Marais, C. Aldrich, The estimation of platinum flotation grade from froth image features by using artificial neural networks, Journal of the Southern African Institute of Mining and Metallurgy, 111(2) (2011) 81-85.
[15] J. Kaartinen, A. Tolonen, Utilizing 3D height measurement in particle size analysis, IFAC Proceedings Volumes, 41(2) (2008) 3292-3297.
[16] Saeedzadeh Fatemeh, Mohammadnejad Niazi Saeed, Sahib Mahmoud Reza, Ebadi Hamid, Mokhtarzadeh Mehdi, Extracting, optimizing and investigating the effect of different image texture information on large-scale image classification, NATIONAL GEOMATICS CONFERENCE, Volume 22, (2015) (in Persian)
[17] C.-H. Yang, C.-H. Xu, X.-m. Mu, K.-J. Zhou, Bubble size estimation using interfacial morphological information for mineral flotation process monitoring, Transactions of Nonferrous Metals Society of China, 19(3) (2009) 694-699.
[18] P. Holtham, K. Nguyen, On-line analysis of froth surface in coal and mineral flotation using JKFrothCam, International Journal of Mineral Processing, 64(2-3) (2002) 163-180.
[19] Determination of mineral grade using MLP neural network and image processing technique, Iranian Journal of Mining Engineering(IRJME),3 (6) ( 2008) 67-73 (in Persian).