[1] Kawashima, K. (2000). Seismic design and retrofit of bridges. Bulletin of the New Zealand Society for Earthquake Engineering, 33(3), 265-285.
[2] Mackie, K. and Stojadinovic, B. Residual Displacements and Post-Earthquake Capacity of Highway Bridges, Proceedings of the 13th World Conference on Earthquake Engineering, Vancouver, Canada, August, 2004. Paper No. 1550.
[3] White, S. L. (2014). Controlled damage rocking systems for accelerated bridge construction, Master’s Thesis, University of Canterbury.
[4] Guerrini, G., Restrepo, J. I., Vervelidis, A., & Massari, M. (2015). Self-centering precast concrete dual-steel-shell columns for accelerated bridge construction: seismic performance, analysis, and design. Report No. PEER 2015, 13.
[5] Routledge, P., McHaffie, B., Cowan, M., & Palermo, A. (2019). Wigram–Magdala Link Bridge: Low-Damage Details for a More Efficient Seismic Design Philosophy. Structural Engineering International, 1-8.
[6] Routledge, P. J., Cowan, M. J., & Palermo, A. (2016). Low-damage detailing for bridges—a case study of Wigram–Magdala bridge. In Proceedings, New Zealand society for earthquake engineering 2016 conference. Christchurch.
[7] Priestley, M.J.N., Sritharan, S., Conley, J. and Pampanin, S. 1999. Preliminary Results and Conclusions form the PRESSS Five-Story Precast Concrete Test Building, PCI Journal, 44(6): 42-67.
[8] Priestley, M.J.N., and Tao, J. 1993. Seismic Response of Precast Prestressed Concrete Frames with Partially Debonded Tendons, PCI Journal, 38(1): 58-69.
[9] El-Sheikh, M., Pessiki, S., Sause, R. and Lu, W. 2000. Moment Rotation Behavior of Unbonded Post-Tensioned Precast Concrete Beam-Column Connections, ACI Structural Journal, 97(1): 122-131.
[10] Cheokh, G., Stone, W. and Kunnath, S. 1998. Seismic Response of Precast Concrete Frames with Hybrid Connections, ACI Structural Journal, 95(5): 527-539.
[11] El-Sheikh, M., Sause, R., Pessiki, S. and Lu, W. 1999. Seismic Behavior and Design of Unbonded Post-Tensioned Precast Concrete Frames, PCI Journal, 44(3): 54-71.
[12] Mander, J. B., & Cheng, C.-T. (1997). Seismic resistance of bridge piers based on damage avoidance design. Technical Report NCEER-97-0014. US National Center for Earthquake Engineering Research, Buffalo, NY.
[13] Zatar, M. and Mutsuyoshi, H. 2000. Reduced Residual Displacements of Partially Prestressed Concrete Bridge Piers, Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, January-February, 2000.
[14] Hewes, J. T. (2003). Seismic design and performance of precast concrete segmental bridge columns. PhD Thesis, University of California at San Diego.
[15] Billington, S. and Yoon, J. 2004. Cyclic Response of Unbonded Posttensioned Precast Columns with Ductile Fiber-Reinforced Concrete, Journal of Bridge Engineering, 9(4): 353-363.