[1] Guideline for Assessment of Soil Liquefaction Potential, Consequences and Mitigation Methods No.525, 2012 (in Persian).
[2] M. Fallahzadeh, A. Haddad, Y. Jafarian, C. Lee, Seismic performance of end-bearing piled raft with countermeasure strategy against liquefaction using centrifuge model tests, Bulletin of Earthquake Engineering, 17(11) (2019) 5929-5961.
[3] A. Elgamal, J. Lu, D. Forcellini, Mitigation of liquefaction-induced lateral deformation in a sloping stratum: Three-dimensional numerical simulation, Journal of geotechnical and geoenvironmental engineering, 135(11) (2009) 1672-1682.
[4] X. Zhang, L. Tang, X. Li, X. Ling, A. Chan, Effect of the combined action of lateral load and axial load on the pile instability in liquefiable soils, Engineering Structures, 205 (2020) 110074.
[5] A. Ebeido, A. Elgamal, K. Tokimatsu, A. Abe, Pile and Pile-Group Response to Liquefaction-Induced Lateral Spreading in Four Large-Scale Shake-Table Experiments, Journal of Geotechnical and Geoenvironmental Engineering, 145(10) (2019) 04019080.
[6] Rahmani, A. Pak, Dynamic behavior of pile foundations under cyclic loading in liquefiable soils, Computers and Geotechnics, 40 (2012) 114-126.
[7] L. Su, H.-P. Wan, S. Abtahi, Y. Li, X.-Z. Ling, Dynamic response of soil-pile-structure system subjected to lateral spreading: shaking table test and parallel finite element simulation, Canadian Geotechnical Journal, (ja) (2019).
[8] R. Sarkar, S. Bhattacharya, B. Maheshwari, Seismic requalification of pile foundations in liquefiable soils, Indian Geotechnical Journal, 44(2) (2014) 183-195.
[9] S. Hui, L. Tang, X. Zhang, Y. Wang, X. Ling, B. Xu, An investigation of the influence of near-fault ground motion parameters on the pile’s response in liquefiable soil, Earthquake Engineering and Engineering Vibration, 17(4) (2018) 729-745.
[10] A. Asgari, M. Oliaei, M. Bagheri, Numerical simulation of improvement of a liquefiable soil layer using stone column and pile-pinning techniques, Soil Dynamics and Earthquake Engineering, 51 (2013) 77-96.
[11] J. Lu, P. Kamatchi, A. Elgamal, Using Stone Columns to Mitigate Lateral Deformation in Uniform and Stratified Liquefiable Soil Strata, International Journal of Geomechanics, 19(5) (2019) 04019026.
[12] L. He, A. Elgamal, M. Hamada, J. Meneses, Shadowing and group effects for piles during earthquake-induced lateral spreading, in: Proc. 14th World Conference on Earthquake Engineering, 2008, pp. 12-17.
[13] K. Panaghi, A. Mahboubi, A. Mahdavian, The effect of earthquake motion characteristics on potentially liquefiable pile-pinned sloping ground, Bulletin of Earthquake Engineering, 17(4) (2019) 1891-1917.
[14] X. Zhang, L. Tang, X. Ling, A.H.C. Chan, J. Lu, Using peak ground velocity to characterize the response of soil-pile system in liquefying ground, Engineering geology, 240 (2018) 62-73.
[15] Jeremić, Development of geotechnical capabilities in OpenSees, Pacific Earthquake Engineering Research Center, College of Engineering …, 2001.
[16] S. Mazzoni, F. McKenna, M.H. Scott, G.L. Fenves, OpenSees command language manual, Pacific Earthquake Engineering Research (PEER) Center, 264 (2006).
[17] H.K. Law, I.P. Lam, Application of periodic boundary for large pile group, Journal of Geotechnical and Geoenvironmental Engineering, 127(10) (2001) 889-892.
[18] A. Klar, S. Frydman, R. Baker, Seismic analysis of infinite pile groups in liquefiable soil, Soil Dynamics and Earthquake Engineering, 24(8) (2004) 565-575.
[19] Z. Cheng, B. Jeremić, Numerical modeling and simulation of pile in liquefiable soil, Soil Dynamics and Earthquake Engineering, 29(11-12) (2009) 1405-1416.
[20] J.H. Prevost, A simple plasticity theory for frictional cohesionless soils, International Journal of Soil Dynamics and Earthquake Engineering, 4(1) (1985) 9-17.
[21] A. Elgamal, Z. Yang, E. Parra, A. Ragheb, Modeling of cyclic mobility in saturated cohesionless soils, International Journal of Plasticity, 19(6) (2003) 883-905.
[22] Elgamal, Z. Yang, E. Parra, Computational modeling of cyclic mobility and post-liquefaction site response, Soil Dynamics and Earthquake Engineering, 22(4) (2002) 259-271.
[23] M.A. Biot, Mechanics of deformation and acoustic propagation in porous media, Journal of applied physics, 33(4) (1962) 1482-1498.
[24] A.H.-C. Chan, A unified finite element solution to static and dynamic problems of geomechanics, Swansea University, 1988.
[25] D.W. Wilson, Soil-pile-superstructure interaction in liquefying sand and soft clay, Citeseer, 1998.
[26] V.M. Taboada-Urtuzuastegui, R. Dobry, Centrifuge modeling of earthquake-induced lateral spreading in sand, Journal of geotechnical and geoenvironmental engineering, 124(12) (1998) 1195-1206.
[27] M. Hamada, Large ground deformations and their effects on lifelines: 1983 Nihonkai-Chubu earthquake, Japanese Case Studies, (1992).