[1] ASTM C78, “Standard Test Method for Flexural Strength of Concrete (Using Simple Beam with Third-Point Loading) ”, American Society for Testing and Materials, 2002.
[2] A.A. Basma, S. Barakat, S.A1-Orimi, “Prediction of Cement Degree of Hydration
Using Artificial Neural Networks”, ACI Material Journal, Vol. 96, No. 2, pp. 42- 48, 1999.
[3] Y. Benachour, C. A. Davy, F. Skoczylas, H. Houari, “Effect of high calcite filler addition upon micro structural, mechanical, Shrinkage and transport properties of a mortar ”, Cement and Concrete Research, Vol. 38, pp. 727- 736, 2008.
[4] M. H. Fazel Zarandi, I. B. Turksen, J. Sobhani, A.A. Ramezanianpour, “Fuzzy polynomial neural networks for approximation of the compressive strength of concrete”, Applied Soft Computing Vol. 8, pp. 488- 498, 2008.
[5] Jian Ping Jiang, “Prediction of Concrete Strength Based on BP Neural Network”, Advanced Materials Research, Vol. 341– 342, pp. 58- 62, 2011.
[6] A. G. Ivakhnenko, “Polynomial Theory of Complex System”, IEEE Trans. Syst. Man & Cybern, S.M.C. 1, pp. 364- 378, 1971.
[7] A.G. Ivakhnenko, “The group method of data handling- a rival of the method of stochastic approximation”, Soviet Automatic Control, Vol.13, No. 3, pp. 43- 55, 1966.
[8] YH. Lin, YY. Tyan, TP. Chang, CY. Chang, “An assessment of optimal mixture for concrete made with recycled concrete aggregates”, Cement and Concrete Research, Vol. 34, No. 8, pp. 1373– 1380, 2004.
[9] M. M. Alshihri, M. A. Azmy, M. S. El-Bisy, “ Neural networks for predicting compressive strength of structural lightweight concrete”, Construction and Building Materials, Vol. 23, pp. 2214– 2219, 2009.
[10] M. Barbuta1, R.M. Diaconescu, M. Harja, “Using Neural Networks for Prediction of Properties of Polymer Concrete with Fly Ash”, Materials in Civil Engineering, Vol. 24, No. 5, pp. 523– 528, 2012.
[11] M. Dumont, Canadian Minerals Yearbook, 2005.
[12] N. Nariman-Zadeh, A. Darvizeh, R. Ahmad-Zadeh, “Hybrid Genetic Design of GMDH-Type Neural Networks Using Singular Value Decomposition for Modeling and Prediction of the Explosive Cutting Process”, Engineering Manufacture, Vol. 217, pp. 779– 790, 2003.
[13] N. Nariman-zadeh, A. Darvizeh, M. Darvizeh, H. Gharababaei, “Modelling of explosive cutting process of plates using GMDH-type neural network and singular value decomposition”, Materials Processing Technology, Vol. 128, No. 1- 3, pp. 80- 87, 2002.
[14] N. Nariman-zadeh, N. Darvizeh, A. Jamali, A. Moeini, “Evolutionary Design of Generalized polynomial Neural Networks for Modeling and Prediction of Explosive forming Process”, Journal of Materials Processing Technology, Vol. 164- 165, pp. 1561- 1571, 2005.
[15] BS 1881, “Method for determination of compressive strength of concrete cubes”, British Standard, Part 116, 1983.
[16] A. A. Ramezanianpour, A. Tarighat , “Neural Network Modeling of Concrete Carbonation”, 7th CANMENT/ACI International conference on fly ash, silica fume, slag and natural pozzolans in concrete, Chennai(Madras), India, July, 2001.
[17] G. D. Ransinchung, Brind Kumar, Veerendra Kumar, “Assessment of Water absorption and Chloride Ion Penetration of Pavement Quality Admixed with Wollastonite and Microsilica”,
Construction and Building, Vol. 23, pp. 1168- 1177, 2009.
[18] G. D. Ransinchung, Brind Kumar, “ Investigations on Pastes and Mortars of Ordinary Portland Cement Admixed with Wollastonite and Microsilica”, Materials in Civil Engineering, Vol. 22, No. 4, pp. 305- 313, 2010.
[19] Renu Mathur, T. Misra, A. K. Pankaj Goel., “Influence of Wollastonite on Mechanical Properties of Concrete”, Scientific and Industrial Research, Vol. 66, pp. 1029- 1034, 2007.
[20] T. Sato, J. J. Beaudoin, “An Ac Impedance Spectroscopy Study of freezing Phenomena in Wollastonite Micro-Fibre Reinforced Cement Paste”, Department of Civil Engineering, NRCC- 46636, pp. 379- 388, 2003.
[21] S. Malasri, E. Thorsteinsdottir, J. Malasri, “ Concrete Strength Prediction Using a Neural
Network”, MAESC 2006 Conference, USA, 2006.
[22] GH. Tattersall, PH. Baker, “An instigation of the effect of vibration on the workability of fresh concrete using a vertical pipe apparatus”, Concrete Research, Vol. 14, pp. 3– 9, 1989.
[23] I. C. Yeh, “Modeling Concrete Strength with Argument– Neuron Network”, Materials in Civil Engineering, Vol. 10, No. 4, pp. 263– 268, 1998.