[1] Alehossein, H., Carter, J. P. and Booker, J. R.“Finite element analysis of rigid footings on jointed rock”, 3rd International Conference on Computational Plasticity, Barcelona, Spain, pp. 935- 945, 1992.
[2] Bobet, A., Fakhimi, A., Johnson, S., Morris, J., Tonon, F. and Yeung M. R., “Numerical Models in Discontinuous Media: Review of Advances for Rock Mechanics Applications”, J. Geotech. and Geoenvir. Engrg., ASCE, 135(11), pp. 1547– 1561, 2009.
[3] Briaud, J. L. and Jeanjean, P. “Load Settlement Curve Method for Spread Footings on Sand”, Vertical and Horizontal Deformations of Foundations and Embankments, ASCE. Vol. 2, pp. 1774- 1804, 1994.
[4] Deere, D. and Miller, R. D., “Engineering Classification and Index Properties for intact Rock”, University of Illinois, Tech. Rep. AF WL-TR-116, 1966.
[5] Frank, R., Bauduin, C., Driscoll, R., Kavvadas, M., Ovesen, N. K., Orr, T. and Schuppener, B., “Designer’s Guide to EN 1997-1, Eurocode 7: Geotechnical Design- General Rules”, 1st ed. London, Thomas Telford Ltd, 2004.
[6] Imani, M., Fahimifar, A. and Sharifzadeh, M. “Upper Bound Solution for the Bearing Capacity of Submerged Jointed Rock Foundations”, Rock Mech. Rock Eng. 45, pp. 639- 646, 2012.
[7] Imani, M., Sharifzadeh, M., Fahimifar, A. and Haghparast, P., “A Characteristic Criterion to Distinguish Continuity of Rock Masses Applicable to Foundations”, 45th US Rock Mech/ Geomech. Symposium, San Francisco, USA, ARMA-11- 508, 2011.
[8] Itasca Consulting Group, Inc. UDEC: Universal distinct element code, Version 3.1., Minneapolis, MN, USA, 2000.
[9] Ki-Bok Min, “Fractured Rock Masses as equivalent continua- a numerical study”, Ph.D. dissertation, Dept. Land and Water Resource Engrg., KTH, Stockholm, Sweden, 2004.
[10] Maghous, S., Bernaud, D., Freard, J. and Garnier, D., “Elastoplastic behavior of jointed rock masses as homogenized media and finite element analysis”, Int. J. Rock Mech. Min Sci. 45, pp. 1273- 1286, 2008.
[11] Merifield, R. S., Lyamin, A. V. and Sloan, S. W. “Limit analysis solutions for the bearing capacity of rock masses using the generalised Hoek–Brown criterion”, Int. J. Rock. Mech. Mining. Sci, 43, pp. 920– 937, 2006.
[12] Prakoso, W. A. and Kulhawy, F. H., “Bearing Capacity of Strip Footings on Jointed Rock Masses”, J. Geotech. and Geoenvir. Engrg., ASCE, 130(12), pp. 1347– 1349, 2004.
[13] Rock Foundations, U.S. Army Corps of Engineers, Engineering and Design, EM 1110-1-2908, Nov. 1994.
[14] Saada, Z., Maghous, S. and Garnier, D. “Bearing capacity of shallow foundations on rocks obeying a modified Hoek–Brown failure criterion”, Comput. Geotech., 35(2), pp. 144- 154, 2008.
[15] Serrano, A. and Olalla, C. “Allowable Bearing Capacity of Rock Foundations Using a Non-linear Failure Criterium”, Int. J. Rock Mech. Min Sci. 33(4), pp. 327- 345, 1996.
[16] Serrano, A. and Olalla, C. “Ultimate bearing capacity of an anisotropic discontinuous rock mass, Part I: Basic modes of failure”, Int. J. Rock. Mech. Min. Sci, 35 (3), pp. 301- 324,
1998.
[17] Serrano, A. and Olalla, C. “Ultimate bearing capacity of an anisotropic discontinuous rock mass, Part II: Determination procedure”, Int. J. Rock. Mech. Min. Sci, 35(3), pp. 325- 348, 1998.
[18] Singh, M. and Rao, K. S. “Bearing Capacity of Shallow Foundations in Anisotropic Non- Hoek–Brown Rock Masses”, J. Geotech. and Geoenvir. Engrg., ASCE, 131(8), pp. 1014– 1023, 2005.
[19] Stille, H. and Palmstrom, A. “Ground behaviour and rock mass composition in underground excavations”, Tunnelling and Underground Space Technology. 23, pp. 46- 64, 2008.
[20] Sutcliffe, D. J., Yu, H. S. and Sloan, S. W. “Lower bound solutions for bearing capacity of jointed rock”, Comput. Geotech., 31, pp. 23– 36, 2004.
[21] Yang, X. L. and Yin, J. H. “Upper bound solution for ultimate bearing capacity with a modified Hoek-Brown failure criterion”, Int. J. Rock. Mech. Min. Sci, 42, pp. 550- 560, 2005.