[1] M. Gholipour, M. M. Alinia, Behavior of multi-story code-designed steel plate shear wall structures regarding bay width. Journal of Constructional Steel Research, 122 (2016) pp. 40–56.
[2] R.G. Driver. G.L. Kulak. D.J.L Kennedy. A.E. Elwi, Cyclic tests of four-story steel plate shear wall. Journal of Structural Engineering ASCE, 124(2) (1998) pp. 112_20.
[3] A. Astaneh-Asl. Seismic behavior and design of steel plate shear walls. Steel tips report: Structural Steel Educational Council, (2000)
[4] J. Shishkin, R. Driver, G. Driver, Analysis of Steel Plate Shear Walls Using The Modified Strip Model. Structural Engineering Report No. 261. University of Alberta, (2013).
[5] A.R. Rahai. M. Alipour. Behavior and Characteristics of Innovative Composite Plate Shear Walls. The Twelfth East Asia-Pacific Conference on Structural Engineering and Construction. Procedia Engineering, 14 (2011) pp. 3205–3212.
[6] D. Dubina, F. Dinu, Experimental evaluation of dual frame structures with thin-walled steel panels. Thin-Walled Structures, 78(2014) pp. 57–69.
[7] C. Lin, K. Tsai, Y. Lin, K. Wang, B. Qu, M. Bruneau, Full Scale Steel Plate Shear Wall: NCREE/MCEER Phase I Tests". Proceeding of the 9th Canadian Conference on Earthquake Engineering. Ottawa. Canada. (2007).
[8] M. Guendel, B. Hoffmeister, M. Feldmann, Experimental and numerical investigations on Steel Shear Walls for seismic Retrofitting”. Proceedings of the 8th International Conference on Structural Dynamics. EURODYN. (2011).
[9] J. Berman, M. Bruneau, Experimental investigation of light‐gauge steel plate shear walls. ASCE Journal of Structural Engineering, 131 (2005), pp. 259‐267.
[10] M. Kharrazi, Fish plate behavior on Steel plate shear wall. Canadian journal of civil engineering, (2005), 96-108.
[11] M. Yaghoubshahi, M.M. Alinia. N. Bonora. N. On the post buckling of flawed shear panels considering crack growth effect. Thin-Walled Structures. 97 (2015), pp.186–198.
[12] A. N. Guz. M.S.H. Dyshel, Stability and residual strength of panels with straight and curved cracks. Theor. Appl. Fract.Mech, 41(2004) pp. 95–101.
[13] J.K. Paik, Residual ultimate strength of steel plates with longitudinal cracks under axial compression–experiments.Ocean Eng. 35(2008) pp. 1775–1783.
[14] J.K. Paik, Residual ultimate strength of steel plates with longitudinal cracks under axial compression—nonlinear finite element method investigations. Ocean Eng, 36(2009), 266–276.
[15] R. Brighenti, Influence of a central straight crack on the buckling behaviour of thin plates under tension compression or shear loading, International Journal of Mechanical Material Design, 6 (2010) pp. 73–87.
[16] Alinia. M.M.. Hosseinzadeh. S.A.A, Habashi. H.R.: Numerical modelling for buckling analysis of cracked shear panels. Thin-Walled Structures, 4 (2007a) pp. 1058–1067.
[17] M.M. Alinia, S.A.A. Hoseinzadeh, H.R. Habashi, Influence of central cracks on buckling and postbuckling behavior of shear panels. Thin-Walled Structures, 45 (2007b) pp. 422–431
[18] M.M. Alinia, S.A.A. Hoseinzadeh, H.R. Habashi, Buckling and post-buckling strength of shear panels degraded by near border cracks, Journal of Constructional Steel Reseaach, 64 (2008) pp.1483–1494.
[19] G. C.Sih, Y. D.Lee, Tensile and compressive buckling of plates weakened by cracks. Theor Appl Fract Mech 6 (1986) pp. 29–38.
[20] D.Shaw, Y. H. Huang, Buckling behaviour of a central cracked thin plate under tension. Eng Fract Mech, 35 (1990) pp. 1019–27.
[21] E. Riks, C.C. Rankin, F. A. Bargon, Buckling behaviour of a central crack in a plate under tension. Eng Frac Mech, 43 (1992) pp. 529–48.
[22] M. M. Alinia, M. Dastfan, Behaviour of thin steel plate shear walls regarding frame members, Journal of Constructional Steel Reseach, 62(2006) pp. 730–738.
[23] E. Byklum, J. Amdahl, A simplified method for elastic large deflection analysis of plates and stiffened panels due to local buckling. Thin-Walled Structures. 40 (2002) pp. 925–953.
[24] C. W. Bert, K. K. Devarakonda, Buckling of rectangular plates subjected to nonlinearly distributed in-plane loading. Journal of Solids Structures, 40. (2003) pp. 4097–4106.
[25] M. R. Khedmati, P. Edalat, M. Javidruzi, Sensitivity analysis of the elastic buckling of cracked plate elements under axial compression. Thin-Walled Structures, 47 (2009) pp. 522–536.
[26] J. K. Paik, Y. V. Satish Kumar, J. M. Lee, Ultimate strength of cracked plate elements under axial compression or tension. Thin-Walled Structures, 43 (2005), 237–72.
[27] N. Friedl, F. G. Rammerstorfer, F. D. Fischer, Buckling of stretched strips. Computure and Structures, 78 (2000). 185–190.
[28] A.N. Guz, M. Dyshel, Fracture and buckling of thin panels with edge crack in tension. Theorical Applied. Fracture. Mechanic, 36(2001) pp.57–60.
[29] R. Brighenti, Buckling of cracked thin-plates under tension and compression. Thin-Walled Structures, 43(2005) pp. 209–224.
[30] T. Siegmund, A numerical study of transient fatigue crack growth by use of an irreversible cohesive zone model. International Journal of Fatigue, 26 (9) (2004) pp. 929–939.
[31] K.L. Roe, T. Siegmund, An irreversible cohesive zone model for interface fatigue crack growth simulation. Eng. Fract. Mech, 70(2) (2003) pp. 209–232.
[32] J.L. Bouvard, J.L. Chaboche, F. Feyel. A cohesive zone model for fatigue and creep–fatigue crack growth in single crystal super alloys. Int. J. Fatigue31(5) (2009) pp. 868–879.
[33] P.F. Liu, S.J. Hou. J.K. Chu, Finite element analysis of postbuckling and delamination of composite laminates using virtual crack closure technique. Compos. Struct.93(6) (2011) pp. 1549–1560.
[34] S. A. Fawaz, Application of the virtual crack closure technique to calculate stress intensity factors for through cracks with an elliptical crack front. Eng. Fract. Mech, 59(3) (1998) pp. 327–342.
[35] G. Servetti, X. Zhang, Predicting fatigue crack growth rate in a welded butt joint: the role of effective R ratio in accounting for residual stress effect. Eng. Fract. Mech. 76(11) (2009) pp. 1589–1602.
[36] T. Belytschko, T. Black, Elastic crack growth in finite elements with minimal remeshing. Int. J. Numer. Methods Eng, 45(5) (1999) pp. 601–620.
[37] T. Belytschko, H. Chen, J. Xu, Dynamic crack propagation based on loss of hyperbolicity and a new discontinuous enrichment. Int. J. Numer. Methods Eng, 58(12) (2003) pp. 1873–1905.
[38] N. Moe¨s, T. Belytschko. T, Extended finite element method for cohesive crack growth. Eng. Fract. Mech.69, (7) (2002) pp. 813–833.
[39] N. Sukumar, N. Moe¨s, B. Moran. Extended finite element method for three-dimensional crack modeling. Int. J. Numer. Methods Eng. 48 (2000) (11) pp. 1549–1570.
[40] N. Sukumar, Z.Y. Huang, J.H. Pre´vost, Partition of unity enrichment for bimaterial interface cracks. International Journal of Numerical Methods Engineering, 59(8) (2003). pp. 1075–1102.
[41] E. Giner, N. Sukuma, J.E. Taranco´n, An Abaqus implementation of the extended finite element method. Eng. Fract. Mech, 76(3) (2009) pp. 347–368.
[42] R.D.S.G. Campilho, M.D. Banea, F.J.P. Chaves, extended finite element method for fracture characterization of adhesive joints in pure mode I. Comput. Mater. Sci, 50(4) (2011) pp. 1543–1549.
[43] G.L. Golewski, P. Golewski, T. Sadowski, Numerical modelling crack propagation under Mode II fracture in plain concretes containing siliceous fly-ash additive using XFEM method. Comput. Mater. Sci, 62(2012). pp. 75–78.
[44] Z.Q. Wang, S. Zhou, J.F. Zhang, Progressive failure analysis of bolted single-lap composite joint based on extended finite element method. Mater. Design, 37 (2012) pp. 582–588.
[45] N. Bonora. A nonlinear CDM model for ductile failure. Eng. Fract. Mech. 58 (2006)11–28.
[46] B. C. Simonsen, R. Tornqvist, Experimental and numerical modelling of ductile crack propagation in large-scale shell structures. Marine Structures, 17 (2004) pp. 1–27.
[47] K. Basler, Strength of plate girders in shear. Trans. ASCE, 128(2) (1963) pp. 683-719.
[48] S. Sabouri-Ghomi, C. Ventura. A. Kharrazi. Shear Analysis and Design of Ductile Steel Plate Walls. Journal of Structural Engineering-ASCE. 12 (2005) pp. 878-889.
[49] Y. Murakami. Stress Intensity Factors Handbook. 1988.
[50] H.A. Richard, M. Fulland, M. Sander, Theoretical Crack Path Prediction. Blackwell Publishing. (2004).
[51] A. Shukla, Practical fracture mechanics in design (2nd ed.). New York. NY: Marcel Dekker. (2005).