[1] عبدلی،م . ع، " مدیریت مواد زائد جامد شهری"، انتشارات سازمان شهرداری های کشور، جلد اول، 1379
[2] Beigl,P.; Wassermann,G.; Schneider,F., and Salhofer,S. “Forecasting municipal solid waste generation in major European cities”, In:Pahl Wostl, C., Schmidt, S.,Jakeman, T.(Eds.), iEMSs 2004 International Congress: Complexity and Integrated Resources Management. Osnabrueck, Germany, 2004.
[3] Bach, H.; Mild, A.; Natter, M.; Weber, A. “Combining socio-demographic and logistic factors to explain the generation and collection of waste paper”, Resources Conservation and Recycling, vol.41, pp. 65– 73, 2004.
[4] Chung, s. “Projecting municipal solid waste: The case of domestic waste in HongKong special administration region”, Environmental enginerring science, vol. 27, pp. 13- 20, 2010.
[5] Chung.s. “Projection of trends in solid waste generation:The case of HongKong SAR”. Resource, conservation and recycling. Vol. 54, pp.759- 768, 2010.
[6] Daskalopoulos, E.; Badr, O., and Probert. S.D. “Municipal solidwaste: A prediction methodology for the generation rate and composition in the European Union countries and the United States of America”, Resources, Conservationand Recycling, vol.24, pp.155– 166, 1998.
[7] Dyson, B.; Chang, N. “Forecasting municipal solidwaste generation in a fast-growin Urban region with system dynamics modeling”, WasteManagement, vol. 25, pp. 669– 679, 2005.
[8] Iffat, A.; Leslie, S. “A Neural Network Approach to Time Series Forecasting”, proceeding of the world congress on engineering,vol.2,july, pp. 1-3,London,uk, 2009.
[9] Ojeda Benítez, S. “Mathematical modeling to predict residential solid waste generation”, Waste Management, vol. 28, pp. S7– S13, 2008.
[10] Noori,R.;Abdoli, M.; Jalili Ghazizade, M.; Samieifard,R. “Comparison of Neural Network and Principal Component-Regression Analysis to Predict the Solid Waste Generation in Tehran”, Iranian J Publ Health, Vol.38, pp. 74- 84, 2009.
[11] Noori, R., Abdoli, M.A.; AmeriGhasrodashti, A., JaliliGhazizade, M. “Prediction of Municipal Solid Waste Generation with Combination of Support Vector Machine and Principal Component Analysis: A Case Study of Mashhad”, Environmental Progress &Sustainable Energy, vol.28, pp. 249- 258, 2008.
[12] okka,L., Antikainen,R., Kauppi, P; “Municipal solid waste production and composition in Finland Changes in the period 1960– 2002 and prospects until 2020”, Resources, Conservation and Recycling, vol. 50, pp. 475– 488, 2007.
[13] Tawfiq, A.; Ibrahim El, Amin., “Artificial neural networks as applied to long-term demand forecasting”, Artificial Intelligence in Engineering, vol.13, pp. 189– 197, 2009.
[14] Zhang, G. “Timeseries forecasting using a hybrid ARIMA and neural network model”, Neurocomputing, vol. 50, pp. 159– 175, 2003.