Investigating the Effect of Aquifer Water Table Variation on the Subsidence Phenomenon and Balancing Strategies of the Aquifer (Case Study: Ali-Abad Plain, Qom)

Document Type : Research Article

Authors

1 University of Qom, Qom, Iran

2 Faculty member, Engineering Geology, Tehran University

Abstract

Ali-Abad Plain of Qom Province, located in the center of Iran, is among the areas recently affected by the subsidence phenomenon due to water overexploitation. In this research, using the differential radar interferometry and Sentinel-1 images, vertical land deformation was monitored for 18 months from March 2015 to September 2016. The results showed maximum subsidence of 240 mm. Moreover, it was found that subsidence in this plain is a progressive and continuous phenomenon with an almost constant spatial distribution. Next, groundwater table fluctuations were measured in Saveh Plain for 14 years ranging from September 2002 to September 2016. The results showed a maximum water table decline of -44 m. Comparison of the ground deformation map with groundwater level fluctuation map revealed a direct relationship between spatial distribution and ground deformation intensity and groundwater drop. In addition, comparing the alluvium thickness variations with ground deformation indicates that the alluvium thickness of the Ali-Abad Plain varies from 20 m in its eastern part to 300 m in the western and central areas. The results do not show any significant relationship between these two parameters in the study area. Moreover, it was found that layering type and the presence of thick fine-grained formations are among other factors affecting the intensity and rate of subsidence in the plain. Regarding the direct relation between groundwater table fluctuations and subsidence rate in the study area, the water yield of the plain showed an annual deficit of 88.17 million cubic meters. Investigating the exploitation resources and the consumption type of groundwater resources in the study area showed that above 98% of the water extraction from the aquifer is through the wells, of which 92% is consumed for agricultural purposes. Hence, exploitation management of the wells, control of illegal exploitation, and revision of cultivation and irrigation are among the major strategies for restoration and balancing the groundwater resources in the study area. 

Keywords


  1. Terzaghi, Principles of soil mechanics, IV—Settlement and consolidation of clay, Engineering News-Record, 95(3) (1925) 874--878.
  2. Bajni, T. Apuani, G.P. Beretta, Hydro-geotechnical modelling of subsidence in the Como urban area, Engineering Geology, 257 (2019) 105144.
  3. Hu, K. Dai, C. Xing, Z. Li, R. Tomás, B. Clark, X. Shi, M. Chen, R. Zhang, Q. Qiu, Y. Lu, Land subsidence in Beijing and its relationship with geological faults revealed by Sentinel-1 InSAR observations, International Journal of Applied Earth Observation and Geoinformation, 82 (2019) 101886.
  4. Jeanne, T.G. Farr, J. Rutqvist, D.W. Vasco, Role of agricultural activity on land subsidence in the San Joaquin Valley, California, Journal of Hydrology, 569 (2019) 462-469.
  5. Ma, W. Wang, B. Zhang, J. Wang, G. Shi, G. Huang, F. Chen, L. Jiang, H. Lin, Remotely sensing large- and small-scale ground subsidence. A case study of the Guangdong–Hong Kong–Macao Greater Bay Area of China, Remote Sensing of Environment, 232 (2019) 111282.
  6. B. Rahnama, H. Moafi, Investigation of land subsidence due to groundwater withdraw in Rafsanjan plain using GIS software, Arabian Journal of Geosciences, 2(3) (2009) 241--246.
  7. Motagh, Y. Djamour, T.R. Walter, H.-U. Wetzel, J. Zschau, S. Arabi, Land subsidence in Mashhad Valley, northeast Iran. Results from InSAR, levelling and GPS, Geophysical Journal International, 168(2) (2007) 518-526.
  8. Amighpey, S. Arabi, Studying land subsidence in Yazd province, Iran, by integration of InSAR and levelling measurements, Remote Sensing Applications. Society and Environment, (2016).
  9. Amighpey, S. Arabi, Studying land subsidence in Yazd province, Iran, by integration of InSAR and levelling measurements, Remote Sensing Applications. Society and Environment, (2016).
  10. a. Dehghani, Hybrid conventional and Persistent Scatterer SAR interferometry for land subsidence monitoring in the Tehran Basin, Iran, ISPRS Journal of Photogrammetry and Remote Sensing, 79 (2013) 157--170.
  11. Mahmoudpour, M. Khamehchiyan, M.R. Nikudel, M.R. Ghassemi, Numerical simulation and prediction of regional land subsidence caused by groundwater exploitation in the southwest plain of Tehran, Iran, Engineering geology, 201 (2016) 6-28.
  12. L. Galloway, T.J. Burbey, Review. Regional land subsidence accompanying groundwater extraction, Hydrogeology Journal, 19(8) (2011) 1459--1486.
  13. -C. Hung, C. Hwang, J.-C. Liou, Y.-S. Lin, H.-L. Yang, Modeling aquifer-system compaction and predicting land subsidence in central Taiwan, Engineering Geology, 147 (2012) 78--90.
  14. M. Wamalwa, K.L. Mickus, L.F. Serpa, D.I. Doser, A joint geophysical analysis of the Coso geothermal field, south-eastern California, Physics of the Earth and Planetary Interiors, 214 (2013) 25-34.
  15. Bonì, G. Herrera, C. Meisina, D. Notti, M. Béjar-Pizarro, F. Zucca, P.J. González, M. Palano, R. Tomás, J. Fernández, J.A. Fernández-Merodo, J. Mulas, R. Aragón, C. Guardiola-Albert, O. Mora, Twenty-year advanced DInSAR analysis of severe land subsidence. The Alto Guadalentín Basin (Spain) case study, Engineering Geology, 198 (2015) 40-52.
  16. م. شریفی, م. نیکتا, سنجش و استخراج مخاطرات حاصل از پدیده نشست در اراضی مسکون تهران بزرگ, in. اولین همایش ملی تحلیل فضایی مخاطرات محیطی کلان شهر تهران, دانشکده علوم جغرافیایی, تهران, 1390.
  17. م. عالم رجبی, م. آریامنش, ح. مهرنهاد, پهنه بندی پتانسیل وقوع زمین نشست در شهر یزد بر اساس مطالعات ژئوتکنیکی, in. هفتمین کنگره ملی مهندسی عمران, دانشگاه سیستان و بلوچستان, زاهدان, 1392.
  18. TAHERI TIZRO, S.A. HOSSEINI, M. KAMALI, Modeling Alluvial Aquifer Using PMWIN software and Evaluation of Subsidence Phenomenon in Asadabad plain, Hamedan Province, Iran, JOURNAL OF NATURAL ENVIRONMENT HAZARDS, 7(17 #r00360) (2018) -.
  19. M. Rajabi, A numerical study on land subsidence due to extensive overexploitation of groundwater in Aliabad plain, Qom-Iran, Natural Hazards, 93(2) (2018) 1085--1103.
  20. Water resources report of Saveh study area Abkhan consulting engineers (in Persian), Iran Water Resources Management, Water utility company in Qom, 2013.
  21. Sarmap, ENVI SARscape 5.2, in, 2015.
  22. M. Goldstein, C.L. Werner, Radar interferogram filtering for geophysical applications, Geophysical research letters, 25(21) (1998) 4035--4038.
  23. اطلاعات چاه های مشاهده ای و چاه های بهره برداری دشت علی آباد قم (منطقه مطالعاتی 4112), استان قم, 1398.
  24. بررسی ژئوفیزیک استان قم, وزارت نیرو، شرکت مدیریت منابع آب ایران، شرکت آب منطقه ای قم, 1380.
  25. برنامه احیاء و تعادل بخشی منابع آب زیرزمینی کشور, وزارت نیرو، معاونت آب و آبفا، دفتر نظام های بهره برداری و حفاظت آب و آبفا, 1393.