The effect of crimped end-hooked steel and modified polymeric fibers on shear behavior of reinforced concrete beams using: experimental and empirical investigation

Document Type : Research Article

Authors

1 Faculty of civil engineering, Islamic Azad University Nour Branch, Nour, Iran

2 Shahrood University of Technology

3 Department of civil engineering, University of Mazandaran

Abstract

One of the undesirable modes of failure in reinforced concrete (RC) beams is the shear failure prior to bending one. One of the methods to prevent the occurrence of shear failure at a low level of shear forces is to provide the minimum shear reinforcement in RC beams. This paper investigates the effect of crimped end-hooked steel and modified polymeric fibers on the shear behavior of RC beams with normal strength. The experimental results of this study are then compared whit the shear behavior of the cross-section having the minimum shear reinforcement under similar conditions and the possibility to replace the minimum shear reinforcement by the fibers according to ASTM C1609 along with the fiber acceptance requirements based on ACI 318-2011, is evaluated. For this purpose, 16 half-scale reinforced concrete beam specimens with the shear span-to-effective depth ratio of 2.6 were made in three groups. The first four specimens were without the shear reinforcement and fibers, the other four specimens were without the fibers and reinforced with the minimum shear reinforcement and, eight other specimens were without shear reinforcement containing a hybrid of steel fiber (0.75%, 1%) and polypropylene fiber (0.25%). Moreover, the effect of longitudinal reinforcement ratio (2.5%, 4%) on the shear behavior of the beam specimens was investigated. After using the four-point loading test, it was observed that the combination of the crimped end-hooked steel and modified polymeric fibers would improve the shear behavior of RC beams and could be a good substitute for the minimum shear reinforcement.

Keywords

Main Subjects