Silica monolith with mesopore structure: synthesize, characterization and application for cadmium removal from wastewater

Document Type : Research Article

Authors

1 Chemical Engineering department, Yasouj University, Yasouj, Iran

2 Material Engineering Department, Yasouj University, Yasouj, I.R. Iran

3 Chemical engineering department, yasouj university, yasouj, Iran

Abstract

One of the most important issues in today's world is the pollution of water with toxic and dangerous metals. Cadmium is one of the toxic metals that enter the surface and groundwater through various industrial wastewaters. In this paper, polyethylene oxide-based silica monolith was synthesized with a uniform porous structure and was used to remove cadmium ions from the aqueous medium. The chemical and physical properties of silica monolith were characterized by SEM, BET, and FTIR techniques. The results of BET and SEM analysis showed that the monolith has a mesopore structure with a specific surface area of 543 m2g-1. The synthesized silica monolith was used as an adsorbent for cadmium removal in a batch adsorption process and the effects of operating parameters including pH, adsorbent concentration, cadmium initial concentration, and contact time were investigated. The Central Composite Design method was used to optimize the effects of operating parameters. The results of the experimental design showed the importance of pH and adsorbent concentration parameters. The analysis of equilibrium data indicated that the maximum adsorption capacity of the monolith for cadmium is 153 mg g-1. The kinetic data were analyzed with various models and results indicated the importance of chemical adsorption. The results of regeneration and reuse of monolith as an adsorbent showed that the synthesized monolith has a high ability to adsorb heavy metal ions from an aqueous solution and can be an option for water treatment at industrial scale.

Keywords

Main Subjects