Document Type : Research Article
Authors
1 Civil Engineering Department, University of Guilan, Rasht, Iran
2 School of Engineering, Shiraz University, shiraz
Abstract
Keywords
Main Subjects
10. Garivani, H., “Tsunami Risk Assessment of Mazandaran Sea”, research journal of seismology and earthquake engineering, 17th year, first and second year (in Persian), .5102
11. Bardet J.-P., Synolakis C. E., Davies H. L., Imamura F., and Okal E. A., “Landslide Tsunamis: Recent Findings And Research Directions”, pure and applied geophysics, 160, .3002 ,71-397111/30/3554-3300 ,9081-3971
12. Horrillo J., Wood A., Kim G.-B, and Parambath A., “A Simplified 3-D Navier-Stokes Numerical Model for Landslide-Tsunami: Application to the Gulf of Mexico”, JOURNAL OF GEOPHYSICAL RESEARCH: OCEANS, VOL. 118, 6934–6950, 2013.
13. Dotsenko S. F., Kuzin I. P., Levin B. V., and Solovieva O. N., “Tsunamis in The Caspian Sea: Historical Events, Regional Seismicity and Numerical Modeling”, Local Tsunami Warning and Mitigation: Proceedings of the International Workshop, 23-31, 2002.
14. Kramer S. L., “Geotechnical Earthquake Engineering”, prentice-hall civil engineering and engineering mechanics series, ISBN 0-13-374943-6, 1996.
15. Lander J. F., “Tsunamis Affecting Alaska 1737-1996”, NGDC Key to Geophysical Research Documentation No. 31, National Oceanic and Atmospheric Administration, 1996.
16. Ivanova T. P. and Trifonov V. G., “Seismotectonics and Current Fluctuations of the Level of the Caspian Sea” Geotektonika, No. 2, 27–42, 2002.
17. Ulomov V. I., Polyakova T. P., and Medvedeva N. S., “Seismogeodynamics of the Caspian Sea Region”, Izvestiya, Physics of the Solid Earth, Vol. 35, No. 12, pp. 1036–1042. Translated from Fizika Zemli, No. 12, pp. 76–82, 1999.
18. Jackson, J., Priestley, K., Allen, M. and Berberian, M., “Active Tectonics of the South Caspian Basin”. Geophysical Journal International, 148(2), pp.214-245, 2002.
19. Okada, Y., “Surface deformation due to shear and tensile faults in a half-space”. Bulletin of the seismological society of America, 75(4), pp.1135-1154, 1985.
20. Okal E. A. and Synolakis C. E., “A Theoretical Comparison of Tsunamis from Dislocations and Landslides”, pure and applied geophysics, 160, 2177-2188, 0033.3002 ,21-771211/30/3554
21. Dean R. G. and Dalrymple R. A., “Water Wave Mechanics for Engineers and Scientists”. Advanced Series on Ocean Engineering- Volume 2, published by world scientific publishing Co. Pte. Ltd. ISBN 9810204205, 358p, 2000.
22. Titov V. V. and Gonzalez F. I., “IMPLEMENTATION AND TESTING OF THE METHOD OF SPLITTING TSUNAMI (MOST) MODEL”, NOAA Technical Memorandum ERL PMEL-112, Pacific Marine Environmental Laboratory, 7600 Sand Point Way NE, Seattle, WA 98115-0070. Contribution No. 1927 from NOAA/Pacific Marine Environmental Laboratory, 1997.
23. NOAA,http://nctr.pmel.noaa.gov/faq_display.php?kw=most%20model, 2017.
24. Imamura F., Yalciner A. C. and Ozyurt G., “Tsunami Modelling Manual (TUNAMI Model)”, 2006.
25. Wan L., Yu X., Steve T., Li S., Kuang Z., Sha Z., Liang J. and He Y., “Submarine landslides, relationship with BSRs in the Dongsha area of South China Sea”, Petroleum Research, Chinese Petroleum Society. Publishing Services by Elsevier B.V. on behalf of KeAi. Volume 1, Issue 1, P 59-69, September 2016.
26. Tajnesaie, M., Shakibaeinia, A., Hoseini, Kh., “Development of Mesh-free Numerical Model in the Simulation of Submerged Landslide Phenomena”, Journal of Hydraulics, Volume 12, Issue 4, Pages 27-41, Winter 2018.
27. Grilli S.T. and Watts P., “Modeling Of Waves Generated By A Moving Submerged Body. Applications to Underwater Landslides”, Engineering Analysis with Boundary Elements 23, 645–656, 1999.
28. Hammack J. L., “A Note on Tsunamis: Their Generation and Propagation in an Ocean Of Uniform Depth”. J Fluid Mech; 60:769–99, 1973.
29. Watts P., “Wavemaker Curves For Tsunamis Generated By Underwater Landslides”. J Waterways, Port, Coast, ocean Engng 1998; 12(3):127–37, 1998.
30. Watts, P., Grilli, S.T., Kirby, J.T., Freyer, G.F., and Tappin, D.R., “Landslide Tsunami Case Studies Using A Boussinesq Model And A Fully Nonlinear Tsunami Generation Model”, Hazards and Earth System Sciences Journal, 3(6), 391-402, 2003.
31. Grilli, S.T., Watts, P., Tappin, D.R., and Freyer, G.J., “Tsunami Generation By Submarine Mass Failure. II: Predictive Equations and Case Studies”. Journal of Waterway, Port, Coastal and Ocean Engineering, 131, .5002 ,013-892
32. Grilli S.T., Vogelmann S. and Watts P., “Development of a 3D Numerical Wave Tank for Modeling Tsunami Generation by Underwater Landslides”, Engineering Analysis with Boundary Elements 26, 301–313, 2002.
33. Wei, G., Kirby, J.T., Grilli, S.T., and Subramanya, R., “Fully Nonlinear Boussinesq Model for Free Surface Waves. Part 1: Highly Nonlinear Unsteady Waves”. Journal of Fluid Mechanics, 294, 71-92, 1995.
34. Levchenko, O.V., Verzhbitskii, V.E, and Lobkovskii, T., “Submarine Landslide Structures in Neopleistocene Deposits on the Western Slope Of the Derbent Basin of the Caspian Sea”. Oceanology Journal, 48(6), 864-871, 2008.
35. Ozyavas A. and Khan S. D., “The Driving Forces Behind the Caspian Sea Mean Water Level Oscillations”, Environ Earth Sci, 65:1821–1830, 2012.
36. Grilli, S.T., Watts, P., “Tsunami Generation by Submarine Mass Failure. I: Modeling, Experimental Validation, and Sensitivity Analyses”. Journal of Waterway, Port, Coastal and Ocean Engineering, 131: 283-297, 2005.
37. Heinrich, P., 1992. Nonlinear water waves generated by submarine and aerial landslides. Journal of Waterway, Port, Coastal and Ocean Engineering 118, 249–266.
38. Liu, P.L.-F., T.-R. Wu, F. Raichlen, C.E. Synolakis, and J. Borrero (2005): Runup and rundown generated by threedimensional sliding masses. J. Fluid Mech., 536, 107-144.
39. Van Nieuwkoop, J. C. C. (2007), Experimental and numerical modelling of tsunami waves generated by landslides, M.Sc.thesis, 164 pp., Delft Univ. of Technol., Delft, Netherlands, Nov.