[1] A. Khashei-Siuki, B. Ghahreman, M. Kochakzadeh, Comparison of Artificial Neural Network Models, ANFIS and regression in estimation of Neyshabour plain aquifer level, Iranian Journal of Irrigation and Drainage, 7(1) (2013) 10-22.
[2] J. Sadidi, M. Kamanghar, H. Rezaiean, A. R. Hamiian, M.Baaghideg, H. Arianejad, Prediction of arid and semi-arid regions groundwater level using artificial neural network and Gradient Descent method, Geographical studies of arid regions, 4(16) (2014) 39-53.
[3] A. Panahi, B. Alijni, Prediction of flood peak using neural network model, Journal of Geography, 38 (2013) 113-128.
[4] M. Mohtasham, A. A. Dehghani, A. Akbarpour, M. Meftah, B. Etebari, Groundwater level determination by using artificial neural network (Case study: BirjandAquiefer), Iran. J. Irrig. Drain, 1(4) (2010) 1-10.
[5] T. Rajaie, F. Pour-Aslan, Prediction of the time and local of thegroundwater level of Davarzan plain. Hydrogeomorphology, 4 (2015) 1-19.
[6] M .H. Habibi, A. A. Nadiri, A. Asghari-Moghaddam, Spatio-temporal Groundwater Level Prediction Using Hybrid Genetic-Kriging Model (Case Study: Hadishahr Plain), Iran-Water Resources, 11(3) (2016) 85-99.
[7] V. Moosavi, M. Vafakhah, B. Shirmohammadi, N. Behnia, A wavelet-ANFIS hybrid model for groundwater level forecasting for different prediction periods, J Water Resour Manage, 27 (2013) 1301–1321.
[8] F. Akbarzadeh, H. Hasanpour, S. Emamgholizadeh, Groundwater Level Prediction of Shahrood Plain using RBF Neural Networks, Journal of Watershed Management Research, 7(13) (2014) 104-118.
[9] F. Abareshi, M. Meftah Halghi, H. Sanikhani, A. A. Dehghani, Comparison of three intelligence techniques for predicting water table depth fluctuations (Case study: Zarringol plain). J. of Water and Soil Conservation, 21(1) (2014) 163-180.
[10] B. Mohammadi, S. M. Biazar, E. Asadi, Performance of hybrid particle swarm algorithm to simulate water level (Case study: Ardabil aquifer), Stained Rainfall Systems, 5(15) (2017) 77-87.
[11] E. Valizadegan, S. Yazdanpanah, Quantitative model of optimal conjunctive use of Mahabad plain’s surface and underground water resources, Amirkabir J. Civil Eng, 50(4) (2018) 11-20.
[12] M. Ehteshami, M. Khorasani, H. Ghadimi, N. Hayatbini, Analysis of Temporal and Periodic Changes of Groundwater Depth and Nitrate Concentration Using Time Series Modeling (Case Study: Kabudarahang Plain), Amirkabir J. Civil Eng, 49(2) (2017) 285-293.
[13] S. Sahoo, T. A. Russo, J. Elliott, I. Foster, Machine learning algorithms for modeling groundwater level changes in agricultural region of the U.S, Water Resources Research, 53(5) (2017).
[14] X. Wang, T. Liu, X. Zheng, H. Peng, J. Xin, B. Zhang , Short-term prediction of groundwater level using improved random forest regression with a combination of random features, Applied Water Science, 8(125) (2018).
[15] H. Emami, F. Derakhshan, Election algorithm: A new socio-politically inspired strategy, AI Communications, 28 (2015) 591–603.
[16] M. B. Menhaj, Computational Intelligence, No. 1. The Basic of Artificial Neural Networks, Amirkabir University, (1998).
[17] E. Atashpaz-Gargari, Development of social optimization algorithm and its efficiency review, Master’s Thesis, Faculty of Electrical and Computer Engineering, University of Tehran, (2007).