Constitutive Laws of Corroded RC Elements Repaired by FRP Sheet

Document Type : Research Article

Authors

1 Associate Professer, Department of Civil & Environmental Engineering, Tarbiat Modares University

2 M.Sc Student, Department of Civil & Environmental Engineering, Tarbiat Modares University

Abstract

Corrosion of reinforcement has very serious effects on structural behavior of reinforced concrete structures. Because of damages due to corrosion, several methods of reviving of such structures have been developed. Using of FRP sheets is one of them. In this research, the compression and tension behavior of corroded RC elements strengthened with FRP sheet is surveyed through modeling of these elements by the means of COM3 and WCOMD software developed at the University of Tokyo and a written program in FORTRAN code. Fixed smeared crack approach has been used for nonlinear analysis. In this method, the average behavior of materials (including concrete, reinforcing bar and FRP sheets) is applied in the modeling. After attaining the material constitutive laws of corroded RC elements and also repaired ones by FRP sheet, the consequences are verified through a comparison with laboratory test results.

Keywords


[1]ا. قربی؛ م. سلطانی محمدی؛ ”توسعه مدل رفتار فشاری  بتن محصور شده با FRP  نشریه بین المللی علوم مهندسی، جلد 19، شماره 8، ص 97-109، 1387
[2]س. رهنمای سپهر؛ م. سلطانی محمدی؛ ”مدلسازی رفتار سخت شدگی کششی المانهای بتن مسلح تقویت شده با FRP  در کشش خالص“، پذیرفته شده برای چاپ در مجله علمی و پژوهشی شریف، 1387
[3]صفائیان، امین، ” رفتار غیرخطی و مدل های رفتاری المان بتن مسلح ترمیم یافته با ورقهای FRP پس از خوردگی آرماتور“، پایان نامه کارشناسی ارشد مهندسی عمران- سازه، دانشکده مهندسی عمران و محیط زیست، . دانشگاه تربیت مدرس، 1387
[4] Toongoenthong, K.; Maekawa, K.; “Multimechanical approach to structural performance assessment of corroded RC members in shear”, Department of civil engineering, University of Tokyo, Japan.
[5] Gambarova, P.; Coronelli, D.; “Structural assessment of corroded reinforced concrete beams: Modeling guidelines”,Journal of Structural Engineering, ASCE, August , 2004.
[6]Maekawa, K.; Okamura, H.; “The Deformational Behaviour and Constitutive Equation of Concrete Using Elasto-Plastic and Fracture Model”, Journal of the Facualty of Engineering, University of Tokyo, v.37, No.2, pp.253-328, 1983.
[7]Broomfeild, J.P., “Corrosion of steel in concrete, Understanding, Investigation and Repair”, E & FN Spon Publishing Company, London, 1997.
[8]Okamura, H.; Maekawa, K.; “Nonlinear analysis and constitutive models of reinforced concrete”, Tokyo (Japan): Gihodo-shuppan, 1991.
[9]Okamura, H.; Maekawa, K.; Sivasubramaniyam, S., “Verification of Modeling for Reinforced Concrete Finite Element”, Finite Element Analysis of Reinforced Concrete Structures, ASCE, pp.528-543, 1985.
[10] Li, B.; Maekawa, K.; Okamura, H.; “Contact Density Model for Stress Transfer across Cracks in Concrete”, Journal of the Facualty of Engineering, University of Tokyo, v.40, No.1, pp.9-52, 1989.
[11]Vecchio, F.J.; Collins, M.P.; “The modified compression-field theory for reinforced concrete elements subjected to shear”, ACI Journal, Vol.83, No.2, pp.219-231, 1986.
[12]Morita, S.; Kaku, T.; “Experimental study on the deformation of axially reinforced concrete prisms subjected to tension and drying”, CAJ Review of the 18 General Meeting, pp.205-209, 1964.
[13]Collins, M.P.; Vecchio, F.J.; “The Response of Reinforced Concrete to In-Plane Shear and Normal Stresses”, University of Toronto, 1982.
[14]Shima, H.; Chou, L.; Okamura, H.; “Micro and Macro Models for Bond Behaviour in Reinforced Concrete”, Journal of the Facualty of Engineering, University of Tokyo, v.39, No.2, pp.133-194, 1987.
[15]Salem, H.M.M.; “Enhanced tension stiffening model and application to nonlinear dynamic analysis of reinforced concrete”, Doctoral dissertation, Department of civil engineering,
University of Tokyo, Japan, 1998.
[16]Shima, H.; Chou, L.; Okamura, H.; “Micro and Macro Models for Bond Behaviour in Reinforced Concrete”, Journal of the Facualty of Engineering, University of Tokyo, v.39, No.2, pp.133-194, 1987.
[17]Rodriguez, J.; Ortega, LM.; Casal, J.; “Corrosion of reinforcing bars and service life of RC structures: Corrosion and bond deterioration”, International conference concrete across borders’, Vol II, 1994.
[18]F´ederation International du B´eton (FIB), “Bond of reinforcement in concrete”, State-of-Art Rep., Bulletin No.10, International Federation for Structural Concrete, Switzerland, 2000.
[19]Ghandehari, M.; Zulli, M.; Shah, S.P.; “Influence of corrosion on bond degradation in reinforced concrete”, Polytechnic Univrsity, Brooklin, NY.
[20]Clark, L.A.; Saifullah, M.; “Effect of corrosion on reinforcement bond strength”, In: Forde M, editor., Proceedings of 5th international conference on structural faults and repairs, vol. 3., Edinburgh: Engineering Technical Press, pp.113–119, 1993.
[21]Vidal, T.; Castel, A.; Francois, R.; “Analyzing crack width to predict corrosion in reinforced concrete”, Cement and Concrete Research, v.34, pp.165-174, 2004.
[22]Gambarova, P.; Rosati, G.; Zasso, B.; “Steel-to-Concrete bond after concrete splitting: Constitutive laws and interface deterioration”, Materials and Structures, v.22, pp.347-356, 1989.
[23]Lee, H.S.; Kage, T.; Noguchi, T.; Tomosawa, F.; “An experimental study on the retrofitting effects of reinforced concrete columns damaged by rebar corrosion strengthened with carbon fiber sheets”, Cement and Concrete Research, No.33, pp.563-570, September , 2002.
[24]Ozden, S.; Akpinar, E.; “Effect of confining FRP overlay on bond strength
enhancement”, Elsevier Science Ltd., Construction and Building Materials, v.21, pp.1377-1389, 2007.
[25]Berto, L.; Simioni, P.; Saetta, A.; “Numerical Modeling of bond behavior in RC structures affected by reinforcement corrosion”, Engineering Structures, August, 2007.
[26]Haskett, M.; Oehlers, D.J.; Mohamed Ali; M.S., “Local and global bond characteristics of steel reinforcing bars”, Engineering Structures, No.30, pp.376-383, April, 2007.