[1] Grayman, W. M., Rossman, L. A., & Geldreich, E. E. (1999). Water quality. Water distribution systems handbook.
[2] Lindley, T. R. (2001). A framework to protect water distribution systems against potential intrusions (Doctoral dissertation, University of Cincinnati).
[3] Mansour Rezaei Fumani, S. (2013). Contaminant intrusion in water distribution systems: Advanced modelling approaches (Doctoral dissertation, University of British Columbia).
[4] Schuster, C. J., Aramini, J. J., Ellis, A. G., Marshall, B. J., Robertson, W. J., Medeiros, D. T., & Charron, D. F. (2005). Infectious disease outbreaks related to drinking water in Canada, 1974–2001. Canadian Journal of Public Health, 96(4), 254-258.
[5] Collins, R., Boxall, J., Besner, M. C., Beck, S., & Karney, B. (2010). Intrusion modelling and the effect of ground water conditions. In Water Distribution Systems Analysis 2010 (pp. 594-585).
[6] Karim, M. R., Abbaszadegan, M., & LeChevallier, M. (2003). Potential for pathogen intrusion during pressure transients. Journal‐American Water Works Association, 95(5), 134-146.
[7] Thomson, J., & Wang, L. (2009). State of technology review report on condition assessment of ferrous water transmission and distribution systems. National Risk Management Research Laboratory, Office of Research and Development, US Environmental Protection Agency.
[8] Kirmeyer, G. J., Friedman, M., Martel, K., Howie, D., LeChevallier, M., Abbaszadegan, M., ... & Harbour, J. (2001). Pathogen Intrusion into the Distribution System, 254 pp. AWWA and AWWARF, Denver, CO, USA.
[9] Besner, M. C., Prévost, M., & Regli, S. (2011). Assessing the public health risk of microbial intrusion events in distribution systems: conceptual model, available data, and challenges. Water research, 45(3), 961-979.
[10] Ruan, F., & McLaughlin, D. (1998). An efficient multivariate random field generator using the fast Fourier transform. Advances in water resources, 21(5), 385-399.
[11] Basha, H. A., & Malaeb, L. N. (2007). Eulerian– Lagrangian method for constituent transport in water distribution networks. Journal of Hydraulic Engineering, 133(10), 1155-1166.
[12] Fernandes, C., & Karney, B. (2004). Modelling the advection equation under water hammer conditions. Urban Water Journal, 1(2), 97-112.
[13] Fox, S., Shepherd, W., Collins, R., & Boxall, J. (2014). Experimental proof of contaminant ingress into a leaking pipe during a transient event. Procedia Engineering, 70, 668-677.
[14] Mansour‐Rezaei, S., & Naser, G. (2013). Contaminant intrusion in water distribution systems: An ingress model. Journal‐American Water Works Association, 105(1), E29-E39.
[15] Jones, S., Shepherd, W., Collins, R., & Boxall, J. (2014). Experimental quantification of intrusion due to transients in distribution systems. Procedia Engineering, 89, 1306-1313.
[16] Fontanazza, C. M., Notaro, V., Puleo, V., Nicolosi, P., & Freni, G. (2015). Contaminant intrusion through leaks in water distribution system: experimental analysis. Procedia Eng, 119, 426-433.
[17] Payasteh M., Keramat A. (2020). Sensitivity Analysis of Hydraulic Parameters on Contaminant Intrusion in Transient Conditions. Amirkabir J. Civil Eng., 51(5).
[18] Covas, D., Stoianov, I., Mano, J. F., Ramos, H., Graham, N., & Maksimovic, C. (2005). The dynamic effect of pipe-wall viscoelasticity in hydraulic transients. Part II—Model development, calibration and verification. Journal of Hydraulic Research, 43(1), 56-70.
[19] Chaudhry, M. H. (2014). Applied hydraulic transients.
[20] Joukowski, N. E. (1898). Memoirs of the imperial academy society of St. Petersburg. Proceedings of the American Water Works Association, 24, 341-424.
[21] Keramat, A., & Haghighi, A. (2014). Straightforward transient-based approach for the creep function determination in viscoelastic pipes. Journal of Hydraulic Engineering, 140(12), 04014058.
[22] Covas, D. I. C. (2003). Inverse transient analysis for leak detection and calibration of water pipe systems-modelling special dynamic effects (Doctoral dissertation, University of London).