Design and construction of inclined plane device for modeling the interface interaction of geo-synthetic layers

Document Type : Research Article

Authors

Department of Civil Engineering, Arak Branch, Islamic Azad University, Arak, Iran

Abstract

One of the important applications of geo-synthetics in the earth’s slopes, such as landfills and waste disposal areas, is to use them as liner system. Proper assessment of the interaction of geo-synthetics at slopes, such as landfill, is an important issue in preventing the slip and instability of the slopes. The inclined plane is a suitable method for assessing the interaction between the geo[1]synthetics interacting in a sloping and tilted state under low normal stresses. The European Standard EN ISO 12957-2 provides a “standard displacement” for estimating the geo-synthetic interface’s friction angle. In this paper, inclined plane device, which for the first time in Iran was completely designed and constructed, describes the technical characteristics of the device and prepares the sample. This apparatus has the ability to perform experiments to investigate the interaction of soil-soil, soil/geo-synthetics and geo-synthetic/geo-synthetic interfaces at low normal stress. Experiments are carried out on geo[1]membrane and geotextile types to investigate the interaction of their surface. By changing the type of geo-synthetics, it was observed that friction angle of geo-synthetic interfaces is not constant and depends on the type of geo-membrane and the woven or non-woven geo-textile. The geo-membrane/geo-textile interface is the least amount of geo-membrane with hard polyethylene, and the highest amount is used when polyvinyl chloride is used.

Keywords

Main Subjects


[1]    R.M. Koerner, T.-Y. Soong, Stability assessment of ten large landfill failures, in:  Advances in transportation and geoenvironmental systems using geosynthetics, 2000, pp. 1-38.
[2]    W. Wu, X. Wang, F. Aschauer, Investigation on failure of a geosynthetic lined reservoir, Geotextiles and Geomembranes, 26(4) (2008) 363-370.
[3]    G.E. Blight, Failures during construction of a landfill lining: a case analysis, Waste management & research, 25(4) (2007) 327-333.
[4]  L. Carbone, Interface behaviour of geosynthetics in landfill cover systems under static and seismic loading conditions, Grenoble, 2014.
[5]  L. Carbone, J. Gourc, P. Carrubba, P. Pavanello, N. Moraci, Dry friction behaviour of a geosynthetic interface using inclined plane and shaking table tests, Geotextiles and Geomembranes, 43(4) (2015) 293306.
[6]    E. ISO, Geosynthetics-determination of Friction Characteristcs-Part 1: Direct Shear Test,  (2005).
[7]  E. ISO, 12957-2: Geosynthetics–determination of friction characteristics, Part 2: Inclined plane test, European committee for standardization, Brussels,  (2005).
[8]  H. Girard, S. Fischer, E. Alonso, Problems of friction posed by the use of geomembranes on dam slopes— examples and measurements, Geotextiles  and Geomembranes, 9(2) (1990) 129-143.
[9]  M. Koutsourais, C. Sprague, R. Pucetas, Interfacial friction study of cap and liner components for landfill design, Geotextiles and Geomembranes, 10(5-6) (1991) 531-548.
[10] M. Izgin, Y. Wasti, Geomembrane–sand interface frictional properties as determined by inclined board and shear box tests, Geotextiles and Geomembranes, 16(4) (1998) 207-219.
[11] Y. Wasti, Z.B. Özdüzgün, Geomembrane–geotextile interface shear properties as determined by inclined board and direct shear box tests, Geotextiles and Geomembranes, 19(1) (2001) 45-57.
[12] H. Ling, C. Burke, Y. Mohri, K. Matsushima, Shear strength parameters of soil-geosynthetic interfaces under low confining pressure using a tilting table, Geosynthetics International, 9(4) (2002) 373-380.
[13] S. Lalarakotoson, P. Villard, J.-P. Gourc, Shear strength characterization of geosynthetic interfaces on inclined planes, Geotechnical testing journal, 22(4) (1999) 284-291.
[14] E.M. Palmeira, Soil–geosynthetic interaction: modelling and analysis, Geotextiles and Geomembranes, 27(5) (2009) 368-390.
[15] E. Palmeira, N. Lima Jr, L. Mello, Interaction between soils and geosynthetic layers in large-scale ramp tests, Geosynthetics international, 9(2) (2002) 149-187.
[16] H.N. Pitanga, J.-P. Gourc, O.M. Vilar, Interface shear strength of geosynthetics: evaluation and analysis of inclined plane tests, Geotextiles and Geomembranes, 27(6) (2009) 435-446.
[17] R. Reyes Ramirez, J. Gourc, Use of the inclined plane test in measuring geosynthetic interface friction relationship, Geosynthetics International, 10(5) (2003) 165-175.
[18] L. Briançon, H. Girard, D. Poulain, Slope stability of lining systems—experimental modeling of friction at geosynthetic interfaces, Geotextiles and geomembranes, 20(3) (2002) 147-172.
[19] G. Stoltz, R. Gallo, D. Poulain, N. Touze-Foltz, Testing procedure with an inclined plane device to assess the residual friction characteristics at geosynthetics interfaces, in, 2012.
[20] L. Briançon, H. Girard, J. Gourc, A new procedure for measuring geosynthetic friction with an inclined plane, Geotextiles and Geomembranes, 29(5) (2012) .284-274
[21] L. Carbone, L. Briançon, J. Gourc, N. Moraci, P. Carrubba, Geosynthetic interface friction using Force Procedure at the Tilting Plane, in:  5th European Conference on Geosynthetics-Eurogeo, 2012, pp. 9398.
[22] P.C. P. Pavanello, N. Moraci, P. Pezzano & M. Miuzzi, Parameters and conditions affecting friction angles in geosynthetic interfaces, 6th European Geosynthetics Congress,  (2016) 563-573.
[23] J. Gourc, P. Delmas, The behaviour of" alive" earthworks with geosynthetics after several decades,  (1970).