The continuous water temperature monitoring by using Acoustic Tomography Technology

Document Type : Research Article


1 Assistant Professor, Water Research Institute

2 Department of Water resources studies and research, Water Research Institute, Tehran, Iran

3 SanjAb Fannavari Khanlije Fars. Ltd.


Acoustic Tomography (AT) technology transmits reciprocal acoustic waves to measure the flow characteristics such as flow velocity, water temperature, suspended sediment concentration, salinity and the flow direction in rivers, dam storages, lakes, seas and the oceans. Although, this technique is widely applied in developed countries, it was not used in Iran yet. This research shows the first acoustic tomography experiment in Iran for measuring the flow velocity in a shallow lake located in the western of Shiraz City. Reciprocal sound transmissions were performed between the two acoustic stations located on both sides of the lake. The length of sound transmission line was 262 m and the central frequency was set to 30 kHz. The experiment period was 20 minutes and the acoustical data was collected at time intervals of 40s. The surface temperature was measured by a temperature sensor (accuracy= 0.1 oC) at four positions along the acoustical ray path. The results showed the arrival time of acoustic waves were approximately constant and it was 177 ms. Finally, the depth- and range-averaged sound speed and the water temperature along the ray path were estimated from the mean travel time. The temperature varied between 19.7 to 19.9 oC that was confirmed by temperature sensor data. The temperature resolution of AT technique was estimated around 0.04 oC that shows the more accuracy than the temperature sensor. The result of this study showed the ability of acoustic tomography technique to monitor the water temperature in natural aquatic environments.


Main Subjects

[1]    P. Brohan, J.J. Kennedy, I. Harris, S.F. Tett, P.D. Jones, Uncertainty estimates in regional and global observed temperature changes: A new data set from 1850, Journal of Geophysical Research: Atmospheres, 111(D12) (2006).
[2]    G. YVON‐DUROCHER, J.M. Montoya, M. Trimmer, G. Woodward, Warming alters the size spectrum and shifts the distribution of biomass in freshwater ecosystems, Global change biology, 17(4) (2011) 1681-1694.
[3]    H.G. Orr, G.L. Simpson, S. Clers, G. Watts, M. Hughes, J. Hannaford, M.J. Dunbar, C.L. Laizé, R.L. Wilby, R.W. Battarbee, Detecting changing river temperatures in England and Wales, Hydrological Processes, 29(5) (2015) 752-766.
[4]    W.C. Quayle, L.S. Peck, H. Peat, J. Ellis-Evans, P.R. Harrigan, Extreme responses to climate change in Antarctic lakes, Science, 295(5555) (2002) 645-645.
[5]    R. Coats, J. Perez-Losada, G. Schladow, R. Richards, C. Goldman, The warming of lake Tahoe, Climatic change,76(1-2)(2006)121-148.
[6]    B. Zouabi-Aloui, S.M. Adelana, M. Gueddari, Effects of selective withdrawal on hydrodynamics and water quality of a thermally stratified reservoir in the southern side of the Mediterranean Sea: a simulation approach, Environmental monitoring and assessment, 187(5) (2015) 292.
[7]    A. Sadeghian, D. de Boer, J.J. Hudson, H. Wheater, K.E. Lindenschmidt, Lake Diefenbaker temperature model, Journal of Great Lakes Research, 41 (2015) 8-21.
[8]    R.K. Gelda, S.W. Effler, Simulation of operations and water quality performance of reservoir multilevel intake configurations, Journal of Water Resources Planning and Management, 133(1) (2007) 78-86.
[9]    W. He, J. Lian, Y. Yao, M. Wu, C. Ma, Modeling the effect of temperature-control curtain on the thermal structure in a deep stratified reservoir, Journal of environmental management, 202 (2017) 106-116.
[10] P. Schneider, S. Hook, R. Radocinski, G. Corlett, G. Hulley, S. Schladow, T. Steissberg, Satellite observations indicate rapid warming trend for lakes in California and Nevada, Geophysical Research Letters, 36(22) (2009).
[11] P. Schneider, S.J. Hook, Space observations of inland water bodies show rapid surface warming since 1985, Geophysical Research Letters, 37(22) (2010).
[12] G. Chavula, P. Brezonik, P. Thenkabail, T. Johnson, M. Bauer, Estimating the surface temperature of Lake Malawi using AVHRR and MODIS satellite imagery, Physics and Chemistry of the Earth, Parts A/B/C, 34(13-16) (2009) 749-754.
[13] S. Sima, A. Ahmadalipour, M. Tajrishy, Mapping surface temperature in a hyper-saline lake and investigating the effect of temperature distribution on the lake evaporation, Remote Sensing of Environment, 136 (2013) 374-385.
[14] Y. Adityawarman, Advanced design of the coastal acoustic tomography system and its application to environmental monitoring of the Seto Inland Sea, Hiroshima University Yudi, 2011.
[15] W.H. Munk, P. Worcester, Ocean Acoustic Tomography, Oceanography. (1988) 1988–1990.
[16] J.A. Mercer, J.A. Colosi, B.M. Howe, M.A. Dzieciuch, R. Stephen, P.F. Worcester, LOAPEX: The long-range ocean acoustic propagation EXperiment, IEEE J. Ocean. Eng. 34 (2009) 1–11. doi:10.1109/JOE.2008.2010656.
[17] Y.A. Chepurin, Experiments on underwater acoustic tomography, Acoust. Phys. 53 (2007) 393–416. doi:10.1134/S1063771007030141.
[18] C. Zhang, Innovative study on non-tidal environmental variations of the Seto Inland Sea by the external forcing, Hiroshima University, 2015.
[19] Z.-N. Zhu, X.-H. Zhu, X. Guo, Coastal tomographic mapping of nonlinear tidal currents and residual currents, Cont. Shelf Res. 143 (2017) 219–227. doi:10.1016/j.(2016). doi:10.1002/hyp.10796. csr.2016.06.014.
[20]X. Zhu, Z. Zhu, Y. Ma, X. Fan, Y. Long, Measuring tidal and residual currents and volume transport through a wide strait by use of the coastal acoustic tomography system, Cont. Shelf Res. 17 (2015) 2015. doi:10.1016/j. csr.2015.08.016.
[21]X. Zhao, D. Wang,  Ocean  acoustic  tomography  from different receiver geometries using the adjoint method, J. Acoust. Soc. Am. 138 (2015) 3733–3741. doi:10.1121/1.4938232.
[22]N. Taniguchi, C.-F. Huang, A. Kaneko, C.-T. Liu, B.M. Howe, Y.-H. Wang, Y. Yang, J. Lin, X.-H. Zhu, N. Gohda, Measuring the Kuroshio Current with ocean acoustic tomography, J. Acoust. Soc. Am. 134 (2013) 3272. doi:10.1121/1.4818842.
[23]N. Taniguchi, C.-F. Huang, A. Kaneko, C.-T. Liu, B.M..Howe, Y.-H. Wang, Y. Yang, J. Lin, X.-H. Zhu, N. Gohda, Measuring the Kuroshio Current with ocean acoustic tomography, J. Acoust. Soc. Am. 134 (2013) 3272. doi:10.1121/1.4818842.
[24]H. Yamoaka, A. Kaneko, J.H. Park, H. Zheng, N. Gohda, T. Takano, X.H. Zhu, Y. Takasugi, Coastal acoustic tomography system and its field application, IEEE J. Ocean. Eng. 27 (2002) 283–295. doi:10.1109/ JOE.2002.1002483.
[25]C. Zhang, X.H. Zhu, Z.N. Zhu, W. Liu, Z. Zhang, X. Fan, R. Zhao, M. Dong, M. Wang, High-precision measurement of tidal current structures using coastal acoustic tomography, Estuar. Coast. Shelf Sci. 193 (2017) 12–24. doi:10.1016/j.ecss.2017.05.014.
[26]M. Bahreinimotlagh, K. Kawanisi, M.M. Danial, M.B. Al Sawaf, J. Kagami, Application of shallow-water acoustic tomography to measure flow direction and river discharge, Flow Meas. Instrum. 51 (2016) 30–39. doi:10.1016/j.flowmeasinst.2016.08.010.
[27]K. Kawanisi, M. BahrainiMotlagh, M. AlSawaf, M. Razaz, High-frequency streamflow acquisition and bed level/flow angle estimates in a mountainous river using  shallow-water acoustic tomography, Hydrol. Process. (2016). doi:10.1002/hyp.10796.
[28]J.K. Lewis, P.J. Stein, S. Rajan, The coupled oceanographic- tomographic analysis and prediction system: A practical means for utilizing high frequency tomography in  the world’s oceans, Ocean Eng. 35 (2008) 1727–1738. doi:10.1016/j.oceaneng.2008.08.017.
[29]K. Kawanisi, M. Razaz, A. Kaneko, S. Watanabe, Long- term measurement of stream flow and salinity in a tidal river by the use of the fluvial acoustic tomography system, J. Hydrol. 380 (2010) 74–81. doi:10.1016/j. jhydrol.2009.10.024.
[30]K. Kawanisi, A. Kaneko, S. Nigo, M. Soltaniasl, New acoustic system for continuous measurement of river discharge and water temperature, Water Sci. Eng. 3 (2010) 47–55. doi:10.3882/j.issn.1674-2370.2010.01.005.
[31]Y. Adityawarman, A. Kaneko, K. Nakano, N. Taniguchi, K. Komai, X. Guo, N. Gohda, Reciprocal sound transmission measurement of mean current and temperature variations in the central part (Aki-nada) of the Seto Inland Sea, Japan, J. Oceanogr. 67 (2011) 173–182. doi:10.1007/ s10872-011-0016-5.
[32]K. Kawanisi, M. Razaz, J. Yano, K. Ishikawa, Continuous monitoring of a dam flush in a shallow river using two crossing ultrasonic transmission lines, Meas. Sci. Technol. 24 (2013) 55303. doi:10.1088/0957-0233/24/5/055303.
[33]C. Zhang, A.; Kaneko, Xiao-Hua Zhu;, N. Gohda, Tomographicmapping of a coastal upwelling and the associated diurnal internal tides in Hiroshima Bay, Japan Chuanzheng, J. Geophys. Res. Ocean. Res. (2015) 1152– 1172. doi:10.1002/2014JC010299.Received.
[34]C.-F. Huang, N. Taniguchi, Y.-H. Chen, J.-Y. Liu, Estimating temperature and current using a pair of transceivers in a harbor environment, J. Acoust. Soc. Am. 140 (2016) EL137-EL142. doi:10.1121/1.4959069.
[35]J.C. Wells, Y. Aota, G. Auger, A. Kaneko, N. Goda, Application of coastal acoustic tomography to Lake Biwa, Japan, J. Acoust. Soc. Am. 140 (2016) 3183–3183. doi:10.1121/1.4970006.
[36]F. Syamsudin, M. Chen, A. Kaneko, Y. Adityawarman, H. Zheng, H. Mutsuda, A.D. Hanifa, C. Zhang, G. Auger, J.C. Wells, X. Zhu, Profiling measurement of internal tides in Bali Strait by reciprocal sound transmission, Acoust. Sci. Technol. 38 (2017) 246–253. doi:10.1250/ast.38.246.
[37]H. Medwin, Speed of sound in water: A simple equation for realistic parameters, J. Acoust. Soc. Am. 58 (1975) 1318. doi:10.1121/1.380790.
[38]K. Kawanisi, K. Ishikawa, M. Razaz, Acoustic Measurements Of Streamflow and Water Temperature In A Mountain River, in: Proc. 7th Int. Symp. Environ. Hydraul., 2014: pp. 29–32.
[39]K. Kawanisi, K. Ishikawa, M. Razaz, J. Yano, K. Kawanisi, AN APPLICATION OF A SHALLOW ACOUSTIC TOMOGRAPHY : CONTINUOUS MONITORING OF STREAMFLOW AND WATER TEMPERATURE IN A MOUNTAIN RIVER, in: 1st Int. Conf. Exhib. Underw. Acoust., 2013: pp. 539–546.
[40]H. Zheng, G. Noriaki, H. NOGUCHI, T. Ito, H. Yamaoka,  T. Tamura, Y. Takasugi, A. Kaneko, Reciprocal Sound Transmission Experiment for Current Measurement in the Seto Inland Sea , Japan, J. Oceanogr. 53 (1997) 117– 127.
[41]K. Kawanisi, S. Watanabe, A. Kaneko, T. Abe, River Acoustic Tomography for Continuous Measurement of Water Discharge, in: 3rd Int. Conf. Exhib. “Underwater Acoust. Meas. Technol. Results,” Nafplion, Greece, 2009: pp. 613–620.
[42]M.B. Al Sawaf, K. Kawanisi, J. Kagami, M. BahrainiMotlagh, Scaling characteristics of mountainous river flow fluctuations determined using a shallow-water acoustic tomography system, Physica A. 484 (2017) 11–20. doi:10.1016/j.physa.2017.04.168.
[43]K. Kawanisi, M. Razaz, K. Ishikawa, J. Yano, M. Soltaniasl, Continuous measurements of flow rate in a shallow gravel-bed river by a new acoustic system, Water Resour. Res. 48 (2012) 1–10. doi:10.1029/2012WR012064.