Modeling of Non-elastic behavior of Carbon Nanotubes upon Continuum Mechanics

Document Type : Research Article



As experiments show, there is nonlinear behavior of carbon nanotubes after exceeding a certain boundary surface while loading continues. Avoiding being involved in molecular dynamics methods and quantum mechanics approach, a continuum macro mechanics based method is employed to predict the nonlinear behavior of bonding forces in carbon nanotubes. Both analytical and numerical approaches, assuming elasto-plastic behavior of tubes are considered in this research. The presented results are well compared with the test as well as molecular dynamics results. Finally, the limitation and advantages of the proposed method are pointed out.


[1]Tomanek D.; Enbody R.J.; Science and Applications of Nanotubes, 1st edition, Kluwer Academic, 2000.
[2]Srivastava, D.; Menon, M.; Cho, K.J.; "Computational nanotechnology with carbon nanotubes and fullerenes", Computational Science
Engineering, no 4, vol. 3, p.p. 42–55, 2001._
[3]Bower C.; Rosen R.; Jin L.; Han J.; Zhou O"Deformation of carbon nanotubes in nanotube–polymer composites", Applied Physics Letter, No 22, vol. 74, p.p. 3317-3319, 1999._
[4]Nardelli M. B.; Yakobson B. I.; Bernholc J.; "Brittle and Ductile Behavior in Carbon Nanotubes", Physical Review Letter, no 21, vol.
81, p.p. 675-695,1998_[5]Ruoff R. S.; Calabri L.; Pugno M. N; "experimental test on fracture strength of nanotube", Reviews on advanced materials science,No 10, p.p. 110-117, 2005.
[6]Yakobson B.I.; Brabec C.J.; Bernholc J.; "Structural mechanics of carbon nanotubes: From continuum elasticity to atomistic fracture", Journal of Computer-Aided Materials Design, no 3, p.p.173-182, 1996_
[7]Yakobson, B.I.; Brabec, C.J.; Bernholc, J"Nanomechanics of carbon tubes: instabilities beyond linear response". Physical Review Letters no 76, p.p. 2511–2514, 1996.
[8]Yakobson, B.I.; Campbell, M.P.; Brabec, C.J Bernholc, J.; "High strain rate fracture and C-chain unraveling in carbon nanotubes", Computational Material science, no 8, p.p. 341–348, 1997.
[9]Zhao Q.; Nardelli M. B.; Bernholc J.; "Ultimate strength of carbon nanotubes: A theoretical study ",Physics Review B, vol. 65, p.p 144105-144110,2002.
[10]Nardelli M. B.; Yakobson B. I.; Bernholc J Mechanism of strain release in carbon nanotubes";Physics Review, B, vol. 57, p.p. 4277-80,1998.
[11]Belytschko T.; Xiao S. P.; Schatz G. C.; Ruoff R. S.; "Atomistic simulations of nanotube fracture"Physics Review B, vol. 65, p.p. 2354301- 8, 2002,
[12]Zhang P.; Jiang H.; Huang Y.; "An atomistic-based . continuum theory for carbon nanotubes: analysis of fracture nucleation", Journal of the Mechanics and Physics of Solids, vol. 52, p.p. 977–998, 1999.
[13]Li Z.; Dharap P.; Sharma P.; Nagarajaiah S Yakobson B. I.;" Continuum field model of defect formation in carbon nanotubes", Journal of applied physics, 97, p.p. 743031-8, 2005.
[14]Kuzumaki T.; Hayashi T.; Ichinose H.; Miyazawa K.; Ito K.; Ishida Y.;" In-situ observed deformation of carbon nanotubes", Philosophical Magazine ,Vol. 77, NO. 6, p.p. 1461-1469, 1998.
[15]Makar j.; Margeson J.; "carbon nanotube/cement composites, early results and potential application",3rd international conference of construction material, p.p. 1-10, 2005.