[1] D.F. Shmueli, Water quality in international river basins, Political Geography, 18(4) (1999) 437-476.
[2] N.W. Quinn, Adaptive implementation of information technology for real-time, basin-scale salinity management in the San Joaquin Basin, USA and Hunter River Basin, Australia, Agricultural water management, 98(6) (2011) 930-940.
[3] L. Somlyódy, M. Henze, L. Koncsos, W. Rauch, P. Reichert, P. Shanahan, P. Vanrolleghem, River Water Quality Modelling: III. Future of the Art, Water Science and Technology, 38(11) (1998) 253-260.
[4] Q.T. Doan, Y. C. Chen, P. K. Mishra, Numerical Modeling in Water Quality Management for Rivers Case Study of the Day/ Nhue River Sub-basin, Vietnam, Journal of Earth Sciences and Engineering, 6(5) (2013) 1111-1119.
[5] G.B. McBride, Calculating stream reaeration coeffcients from oxygen profles, Journal of Environmental Engineering, 128(4) (2002) 384-386.
[6] R. Prairie James, B. Rajagopalan, J. Fulp Terrance, A. Zagona Edith, Statistical Nonparametric Model for Natural Salt Estimation, Journal of Environmental Engineering, 131(1) (2005) 130-138.
[7] M. Bagherian Marzouni, A.M. Akhoundalib, H. Moazed, N. Jaafarzadeh, J. Ahadian, H. Hasoonizadeh, Evaluation of Karun River Water Quality Scenarios Using Simulation Model Results, International Journal of Advanced Biological and Biomedical Research, 2(2) (2014) 339-358.
[8] E. Farber, A. Vengosh, I. Gavrieli, A. Marie, T.D. Bullen, B. Mayer, R. Holtzman, M. Segal, U. Shavit, Management scenarios for the Jordan River salinity crisis, Applied Geochemistry, 20(11) (2005) 2138-2153.
[9] R. Kerachian, Waste-Load Allocation Model for Seasonal River Water Quality Management: Application of Sequential Dynamic Genetic Algorithms, Scientia Iranica, 12(2) (2005) 117–130.
[10] V. Cat, Assessment of Saline Water Intrusion into Huong River in Dry Season, Journal of Shipping and Ocean Engineering, 1(1) (2011) 54-64.
[11] Y. Yu, H. Zhang, C. Lemckert, Salinity and turbidity distributions in the Brisbane River estuary, Australia, Journal of Hydrology, 519 (2014) 3338-3352.
[12] Q.T. Doan, C.D. Nguyen, Y.C. Chen, K.M. Pawan, Modeling the influence of river flow and salinity intrusion in the Mekong river estuary, Vietnam, Lowland Technology International, 16(1) (2014) 14-25.
[13] H. Ghadiri, Salinization of Karun River in Iran by Shallow Groundwater and Seawater Encroachment, Advances in Hydro-Science and Engineering, 4 (2016) 1-9.
[14] Iran Ministry of Power, the decisions of the twenty-ffth session of the Supreme Council for Water Iran, Ministry of Power, Tehran, Iran, 2016. (In Persian).
[15] K. Naddaf, H. Honari, M. Ahmadi, Water quality trend analysis for the Karoon River in Iran, Environmental monitoring and assessment, 134(1-3) (2007) 305-312.
[16] M. Karamouz, N. Mahjouri, R. Kerachian, River water quality zoning: a case study of Karoon and Dez River system, Health Science and Engineering. 1(2) (2004) 16-27.
[17] M. Afkhami, M. Shariat, N. Jafarzadeh, H. Ghadiri, R. Nabizadeh, Developing a water quality management model for Karun and Dez Rivers, Environmental Health Science and Engineering, 4(2) (2007) 99-106.
[18] Khuzestan Water and Power Authority (KWPA) , An assessment of pollutants in Karun River: A report prepared by the Water Quality Assessment section, 2000.
[19] S. Kashefpour, J. Zahiri, Comparison of Empirical Equations' Application in the Advection-Dispersion Equation (ADE) on Sediment Transport Modelling, World Applied Sciences. 11(8) (2010) 1015-1024.
[20] R. Holtzman, U. Shavit, M. Segal-Rozenhaimer, I.Gavrieli, A. Marei, E. Farber, A. Vengosh, Quantifying Ground Water Inputs along the Lower Jordan River, 34 (2005) 897–906.
[21] Danish Hydraulic Institue (DHI), MIKE11 a modeling system for rivers and channels, Reference Manual, 2009.
[22] C. Lemckert, P. Campbell, G. Jenkins, Turbulence in the bottom boundary layer of Moreton Bay, Queensland, Australia, Journal of Coastal Research, (64) (2011) 1091.
[23] A. Roshanfekr, S. Kashefpour, N. Jafarzadeh, Numerical modelling of heavy metals for riverine systems using a new approach to the source term in the ADE, Hydroinformatics, 10(3) (2008) 245- 255
[24] S. Mohammadi, S.M. Kashefpour, Numerical modeling of flow in riverine basins using an improved dynamic roughness coeffcient, Water resources, 41(4) (2014) 412-420.
[25] E. Kanda, J. Kosgei, E. Kipkorir, Simulation of organic carbon loading using MIKE 11 model: A case of River Nzoia, Kenya, Water Practice and Technolog,10 (2) (2015) 298- 304.
[26] H.B. Fischer, List, E. J., Koh, R. C. Y., Imberger, J.and Brooks, N. H, Mixing in inland and coastal waters, Academic Press, New York 1979, pp. 483.
[27] I.W. Seo, T.S. Cheong, Predicting longitudinal dispersion coeffcient in natural streams, Journal of hydraulic engineering, 124(1) (1998) 25-32.
[28] Z. Q. Deng, V.P. Singh, L. Bengtsson, Longitudinal dispersion coeffcient in straight rivers, Journal of hydraulic engineering, 127(11) (2001) 919-927.
[29] S.M. Kashefpour, R.A. Falconer, Longitudinal dispersion coeffcients in natural channels, Water Research, 36(6) (2002) 1596-1608.
[30] M. Hughes, P. Harris, T. Hubble, Dynamics of the turbidity maximum zone in a micro-tidal estuary: Hawkesbury River, Australia, Sedimentology, 45(2) (1998) 397-410.
[31] M. Naseri, S.M. Kashefpour, Hydrodynamic simulation and qualitative parameters in the river system by using FASTER., Journal of Iran Water Research 7(13) (2013) 121-129. (In Persian). [32] W.H.O. WHO, Guidelines for drinking water quality: surveillance and control of community supplies, 2008.
[33] Food and Agricultural Organization of the United Nations (FAO), Water quality for agriculture, 1976.