[1] M. Dolores Esteban, J.-S. López-Gutiérrez, V. Negro, C. Matutano, F.M. García-Flores, M.Á. Millán, Offshore wind foundation design: some key issues, Journal of Energy Resources Technology, 137(5) (2015).
[2] L.C. Reese, W.R. Cox, F.D. Koop, Analysis of laterally loaded piles in sand, Offshore Technology in Civil Engineering Hall of Fame Papers from the Early Years, (1974) 95-105.
[3] R.E.S. Moss, J.A. Caliendo, L.R. Anderson, Investigation of a cyclic laterally loaded model pile group, Soil Dynamics and Earthquake Engineering, 17(7-8) (1998) 519-523.
[4] F. Rosquoet, L. Thorel, J. Garnier, Y. Canepa, Lateral cyclic loading of sand-installed piles, Soils and foundations, 47(5) (2007) 821-832.
[5] W. Liao, J. Zhang, J. Wu, K. Yan, Response of flexible monopile in marine clay under cyclic lateral load, Ocean Engineering, 147 (2018) 89-106.
[6] C.N. Abadie, Cyclic lateral loading of monopile foundations in cohesionless soils, University of Oxford, 2015.
[7] Z. Liu, Y. Zhang, Effect of drainage conditions on monopile soil-pile interaction in sandy seabed, Ocean Engineering, 315 (2025) 119826.
[8] M. Achmus, K. Abdel-Rahman, Y.-S. Kuo, Numerical modelling of large diameter steel piles under monotonic and cyclic horizontal loading, in: 10th International Symposium on Numerical Models in Geomechanics, GREECE Rhodes, 2007, pp. 453-459.
[9] Y.-S. Kuo, M. Achmus, K. Abdel-Rahman, Minimum embedded length of cyclic horizontally loaded monopiles, Journal of Geotechnical and Geoenvironmental Engineering, 138(3) (2012) 357-363.
[10] I. Depina, T.M.H. Le, G. Eiksund, T. Benz, Behavior of cyclically loaded monopile foundations for offshore wind turbines in heterogeneous sands, Computers and Geotechnics, 65 (2015) 266-277.
[11] M.M. Ahmadi, S. Hadei, S.A. Borzeshi, A. Hokmabadi, Effects of Loading Frequency on Soil–Pile Interaction Using Numerical Nonlinear Three-Dimensional Analyses, International Journal of Geomechanics, 25(1) (2025) 04024301.
[12] D.A. Brown, C. Morrison, L.C. Reese, Lateral load behavior of pile group in sand, Journal of Geotechnical Engineering, 114(11) (1988) 1261-1276.
[13] P. Cuéllar, M. Baeßler, W. Rücker, Ratcheting convective cells of sand grains around offshore piles under cyclic lateral loads, Granular Matter, 11(6) (2009) 379-390.
[14] R. Owji, G. Habibagahi, M. Veiskarami, An experimental study on the lateral behavior of piles in unsaturated sand under monotonic, cyclic and post cyclic loading, Geotechnical and Geological Engineering, (2024) 1-21.
[15] P. Cuéllar, S. Georgi, M. Baeßler, W. Rücker, On the quasi-static granular convective flow and sand densification around pile foundations under cyclic lateral loading, Granular Matter, 14(1) (2012) 11-25.
[16] G. Yin, F. Niu, J. Luo, J. Wang, M. Liu, T. Dong, Y. Cao, A. Li, High potential for pile-bearing capacity loss and ground subsidence over permafrost regions across the Northern Hemisphere, Global and Planetary Change, 226 (2023) 104156.
[17] G. Nicolai, L.B. Ibsen, C. O'Loughlin, D. White, Quantifying the increase in lateral capacity of monopiles in sand due to cyclic loading, Géotechnique Letters, 7(3) (2017) 245-252.
[18] P. Truong, B. Lehane, V. Zania, R.T. Klinkvort, Empirical approach based on centrifuge testing for cyclic deformations of laterally loaded piles in sand, Géotechnique, 69(2) (2019) 133-145.
[19] Y. Wang, M. Zhu, W. Gong, G. Dai, H. Lu, B. Wang, Lateral behavior of monopiles considering the effects of sand subsidence and densification under lateral cyclic loading, Marine Georesources & Geotechnology, (2021) 1-11.
[20] H. Ma, J. Yang, L. Chen, Numerical analysis of the long-term performance of offshore wind turbines supported by monopiles, Ocean Engineering, 136 (2017) 94-105.
[21] T. Wichtmann, A. Niemunis, T. Triantafyllidis, Strain accumulation in sand due to cyclic loading: drained cyclic tests with triaxial extension, Soil Dynamics and Earthquake Engineering, 27(1) (2007) 42-48.
[22] T. Wichtmann, A. Niemunis, T. Triantafyllidis, On the determination of a set of material constants for a high‐cycle accumulation model for non‐cohesive soils, International journal for numerical and analytical methods in geomechanics, 34(4) (2010) 409-440.
[23] S.-H. Chong, J.C. Santamarina, Sands subjected to repetitive vertical loading under zero lateral strain: accumulation models, terminal densities, and settlement, Canadian Geotechnical Journal, 53(12) (2016) 2039-2046.
[24] J.B. Knight, E.E. Ehrichs, V.Y. Kuperman, J.K. Flint, H.M. Jaeger, S.R. Nagel, Experimental study of granular convection, Physical Review E, 54(5) (1996) 5726.
[25] E. Ehrichs, J.K. Flint, H.M. Jaeger, J.B. Knight, S.R. Nagel, G.S. Karczmar, V.Y. Kuperman, Convection in vertically vibrated granular materials, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences, 356(1747) (1998) 2561-2567.
[26] M. Hassan, D. Liyanapathirana, W. Fuentes, C. Leo, P. Hu, A review of soil deformation and lateral pressure ratcheting phenomena in integral abutment bridges, Transportation Geotechnics, (2024) 101388.
[27] P. Cuéllar, Pile Foundations for Offshore Wind Turbines: Numerical and Experimental Investigations on the Behaviour under Short Term and Long-Term Cyclic Loading, Berlin, Berlin, Germany, 2011.
[28] L. Li, H. Liu, W. Wu, M. Wen, M.H. El Naggar, Y. Yang, Investigation on the behavior of hybrid pile foundation and its surrounding soil during cyclic lateral loading, Ocean Engineering, 240 (2021) 110006.
[29] K. Lesny, J. Wiemann, Design aspects of monopiles in German offshore wind farms, in: Proceedings of the International Symposium on Frontiers in Offshore Geotechnics, AA Balkema Publishing, 2005, pp. 383-389.
[30] P. Tasiopoulou, Y. Chaloulos, N. Gerolymos, A. Giannakou, J. Chacko, Cyclic lateral response of OWT bucket foundations in sand: 3D coupled effective stress analysis with Ta-Ger model, Soils and Foundations, 61(2) (2021) 371-385.
[31] A. Hokmabadi, A. Fakher, B. Fatahi, Full scale lateral behaviour of monopiles in granular marine soils, Marine Structures, 29(1) (2012) 198-210.
[32] M.F. Awad-Allah, N. Yasufuku, A.H. Abdel-Rahman, Cyclic response of wind turbine on piles in unsaturated sand, International Journal of Physical Modelling in Geotechnics, 17(3) (2016) 161-176.
[33] C. LeBlanc, G. Houlsby, B. Byrne, Response of stiff piles in sand to long-term cyclic lateral loading, Géotechnique, 60(2) (2010) 79-90.
[34] R.-p. Chen, Y.-x. Sun, B. Zhu, W.D. Guo, Lateral cyclic pile–soil interaction studies on a rigid model monopile, Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 168(2) (2015) 120-130.
[35] G. Yu, W. Gong, M. Chen, G. Dai, Y. Liu, Prediction and analysis of behaviour of laterally loaded single piles in improved gravel soil, International Journal of Civil Engineering, 17(6) (2019) 809-822.
[36] S. Basack, S. Dey, Influence of relative pile-soil stiffness and load eccentricity on single pile response in sand under lateral cyclic loading, Geotechnical and Geological Engineering, 30(4) (2012) 737-751.
[37] K. Madhusudan Reddy, R. Ayothiraman, Experimental studies on behavior of single pile under combined uplift and lateral loading, Journal of Geotechnical and Geoenvironmental Engineering, 141(7) (2015) 04015030.
[38] R.T. Klinkvort, O. Hededal, Lateral response of monopile supporting an offshore wind turbine, Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 166(2) (2013) 147-158.
[39] S.N. Rao, V. Ramakrishna, M.B. Rao, Influence of rigidity on laterally loaded pile groups in marine clay, Journal of Geotechnical and Geoenvironmental Engineering, 124(6) (1998) 542-549.
[40] M. Abdollahi, J. Bolouri Bazaz, Reconstitution of Sand Specimens Using a Rainer System, International Journal of Engineering, 30(10) (2017) 1451-1463.
[41] M. Kazemi, J.B. Bolouri, A curtain traveling pluviator to reconstitute large scale sand specimens, Geomechanics & engineering, 14(2) (2018) 131-139.
[42] P.a.A. Peralta, M., An experimental investigation of piles in sand subjected to lateral cyclic loads in: Proceedings of the 7th International Conference on Physical Modelling in Geotechnics (ICPMG), 2010, pp. 985-990.
[43] A. Gotschol, Veränderlich elastisches und plastisches Verhalten nichtbindiger Böden und Schotter unter zyklisch-dynamischer Beanspruchung, Universität Kassel, Hessen, Germany, 2002.
[44] K. Lesny, P. Hinz, Design of monopile foundations for offshore wind energy converters, in: Contemporary topics in deep foundations, 2009, pp. 512-519.
[45] D. Kallehave, C.L. Thilsted, M. Liingaard, Modification of the API py formulation of initial stiffness of sand, in: Offshore Site Investigation and Geotechnics: Integrated Technologies-Present and Future, Society of Underwater Technology, 2012.
[46] C.N. Abadie, B.W. Byrne, G.T. Houlsby, Rigid pile response to cyclic lateral loading: laboratory tests, Géotechnique, 69(10) (2019) 863-876.
[47] B. Walz, Der 1g-Modellversuch in der Bodenmechanik-Verfahren und Anwendung, Vortrag zum, 2 (2006) 13-26.
[48] A. Barari, M. Bagheri, M. Rouainia, L.B. Ibsen, Deformation mechanisms for offshore monopile foundations accounting for cyclic mobility effects, Soil Dynamics and Earthquake Engineering, 97 (2017) 439-453.
[49] J. Li, D. Guan, Y.-M. Chiew, J. Zhang, J. Zhao, Temporal evolution of soil deformations around monopile foundations subjected to cyclic lateral loading, Ocean Engineering, 217 (2020) 107893.
[50] K.O. Abongo, Model Study of the Static and Cyclic Lateral Capacity of Finned Piles, Lehigh University, 2019.
[51] N.S. Cheng, Y.M. Chiew, X. Chen, Scaling analysis of pier-scouring processes, Journal of Engineering Mechanics, 142(8) (2016) 06016005.
[52] M. Wei, Y.-M. Chiew, D. Guan, Temporal development of propeller scour around a sloping bank, Journal of Waterway, Port, Coastal, and Ocean Engineering, 144(5) (2018) 06018005.
[53] D. Guan, J. Liu, Y.-M. Chiew, Y. Zhou, Scour evolution downstream of submerged weirs in clear water scour conditions, Water, 11(9) (2019) 1746.