ارائه‌ی مدل رگرسیونی چندگانه وزنی برای تورهای کاری سفرهای درون‌شهری در رویکرد فعالیت- مبنا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 مرکز تحقیقات راه، مسکن و شهرسازی، تهران، ایران

2 دانشکده مهندسی عمران و محیط زیست، دانشگاه تربیت مدرس، تهران، ایران

چکیده

چکیده: در یک تقسیم بندی کلان، مدل سازی در برنامه ریزی حمل و نقل به دو دسته ی سفر-مبنا و فعالیت- مبنا تقسیم می شود در رویکرد فعالیت-مبنا، برای باز تولید زنجیره ی سفر هر فرد، محل انجام فعالیت های روزانه فرد مدل و در نهایت زنجیره سفر هر فرد استخراج می گردد. از همفزون سازی زنجیره سفر افراد در هر ناحیه برای ساعت مشخص، ماتریس مبدا- مقصد بدست می آید در مقاله جاری، با استفاده از مشخصات اقتصادی- اجتماعی همفزون نواحی و بررسی اثرگذاری مشخصات کاربری زمین، مدل خطی تور هر منطقه باز تولید و ارائه شده است. برای ساخت این مدل از اطلاعات مبدا- مقصد استفاده شده در فرآیند چهارمرحله ای استفاده شده است که نسبت به اطلاعات رویکرد فعالیت-مبنا هزینه گردآوری کمتری لازم دارد.مدل سازی تور شهروندان به دلیل ناهمسانی واریانس خطاها با استفاده از روش حداقل مربعات وزنی صورت پذیرفت که در نتیجه رگرسیون خطی چندگانه وزنی با متغیرهای مستقل جمعیت و تعداد شاغلین بر حسب وزن تعداد شاغلین بدست آمد. ناهمسانی واریانس کارایی مدل را تحت تاثیر قرار می دهد و دیگر ویژگی حداقل واریانس ضرایب تامین نمی شود در مقایسه با نتایج رگرسیون چند گانه معمولی با متغیر مستقل تعداد شاغلین و جمعیت مقدار F برابر با 689(27 درصد رشد) است. مقدار تست t متغیر مستقل جمعیت از 2/79 در حالت غیر وزنی به 2/72 کاهش پیدا کرده است که تغییر ناچیزی است ولی برای متغیر مستقل از 2/62 به 3/40 (حدود 30 درصد) افزایش پیدا کرده است. علامت ضریب ثابت منفی است ولی مدقار آن بسیار کوچک بوده ( در مقایسه با مقدرا بیشینه مشاهده 7202 تور (0/069 درصد) و میانگین 1386 تور (0/36 درصد) و مقدار R2 (0/927 ) و قابل قبول است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Modeling the Intra City Tours with Work Purpose by Using Weighted Multiple Regressions

نویسندگان [English]

  • A. R. Mahpour 1
  • S. Seyedabrishami 2
  • A. R. Mamdoohi 2
  • A. H. Baghestani 2
1 Road, Housing and Development Research Center (BHRC), Tehran, Iran
2 Faculty of Civil & Environmental Engineering, Tarbiat Modares University, Tehran, Iran
چکیده [English]

In this paper by using the aggregate socioeconomic features of each zone and considering the land use prosperities, the aggregate zonal tours were modeled. For that, classic 4-step modeling database was utilized in which less data collection cost needs. Due heteroscedasticity , appling weighted least square (WLS) method led to multiple weighted regressions by two exogenous independent variables; population and number of employers in zone. Heteroscedasticity affect the efficiency of regression. In comparing of two model, the F test of WLS method growth 27 percent and the amount t students for population reduced from 2.79 to 2.27 that in negligible. On the other hand, the amount of t students for number of employers increases from 2.62 to 3.40 (30 percent). Constant coefficient is negative but in comparison with the maximum number of observed tours (7202 tours) is 0.069 percent and the average number of observed tours (1386 tours) is 0.36 percent that is negligible and the R2 goodness of fit index is 0.927 and acceptable.

کلیدواژه‌ها [English]

  • Activity-based Model
  • Tour
  • Weighted Multiple Regressions
  • Qazvin
[1] T.A Arentze, D. Ettema, H.J.P. Timmermans, Estimating a model of dynamic activity generation based on one-day observations: Method and results, Transportation Research Part B, 45 (2) (2011) 447-460.
[2] C.R. Bhat, F.S. Koppelman, A conceptual framework of individual activity program generation, Transportation Research, 27 (1) (1993) 433-446.
[3] C.R. Bhat, Recent Methodological advances relevant to activity and travel behavior analysis, IATBR Conference, Texas-USA, 1997.
[4] J.L. Bowman, M.A. Bradley, Activity-based models: approaches used to achieve integration among trips and tours throughout the day, European Transport Conference, Leeuwenhorst- Netherlands, 2008.
[5] J.L. Bowman, Historical development of activity based models: theory and practice, Traffic Engineering and Control, 50 (3) (2009) 314–318.
[6] D.F. Ettema, H.J.P Timmermans, Activity-based approaches to travel analysis: Chapter one: Theories and Models of Activity Patterns, First Edtition, Pergamon- Elsevier, 1997.
[7] T. Hagerstrand, What about people in regional science? The Regional Science Association, 24(1) (1970) 7-21.
[8] P.M. Jones, New approaches to understanding travel behaviour: the human activity approach, in Hensher and Stopher (eds.), Behavioral Travel Modeling, Croom Helm, London, United Kingdom, 1979.
[9] M.D. Meyer, E.J. Miller, Urban transportation planning, Third edition, McGraw Hill, New York, USA, 2004.
[10] E.I. Pas, F.S. Koppelman, An examination of the determinants of day-to-day variability in individuals' urban travel behavior, Transportation, 14 (4) (1987) 3-20.
[11] E.I. Pas, The effect of selected sociodemographic characteristics on daily travel activity behavior. Environment and Planning A, 16(2) (1984) 571-581.
[12] E.I. Pas, Weekly travel-activity behavior, Transportation, 15(2) (1988) 89-109.
[13] W. Recker, G. McNally, S. Root, , A model of complex travel behavior: part II, An operational model, Transportation Research Part A, 20(1) (1986) 319-330.
[14] Y. Shiftan, M. Ben-Akiva, K. Proussaloglou, G.D. Jong, Y. Popuri, K. Kasturirangan S. Bekhor, Activity-Based modeling as a tool for better understanding travel behavior, 10th International Conference on Travel Behavior Research, Lucerne-Switzerland, 2003.
[15] C.H.U Zhaoming, H. Chen, L. Cheng, A review of activity based travel demand modeling, ASCE, 12(1) (2012) 48- 59.
[16] A. Sivakumar and A. Pinjari, Recent advances in activity and travel pattern modelling, Transportation, 39 (2) (2012) 749- 754.
[17] L. Yang, G. Zheng, X. Zhu, Cross- nested logit model for the joint choice of residential location, travel mode, and departure time, Habitat International, 38(3) (2013) 157-166.
[18] H. Kim, C. Kim, D. Park, Y. Kim, A tour-based approach to destination choice modeling incorporating agglomeration and competition effects, Proceedings of the Eastern Asia Society for Transportation Studies, 8(1) (2011) 101-112.
[19] A. Ettema, A. Borgers, H.J.P. Timmermans, A competing risk hazard model of activity choice, timing, sequencing, and duration, In Transportation Research Record: Journal of the Transportation Research Board, 1493(1) (1995) 101-109.
[20] C.R. Bhat, A hazard-based duration model of shopping activity with nonparametric baseline specification and nonparametric control for unobserved heterogeneity, Transportation Research B, 30(1) (1996) 189-207.
[21] F. Golob, H. Meurs, A structural model of temporal change in multi-modal travel demand, Transportation Research Part A, 21(1) (1987) 391-400.
[22] F. Golob, Review: Structural equation modeling for travel behavior research, Transportation Research Part B, 37(2) (2003) 1- 25.
[23] R. Kitamura, E.I. Pas, V. Lula, K. Lawton and E. Benson, The sequenced activity mobility simulator (SAMS): An integrated approach to modeling transportation, land use and air quality, Transportation, 23(1) (1996) 267-291.
[24] P.A. Salvini, E.J. Miller, ILUTE: An Operational prototype of a comprehensive microsimulation model of urban systems, Networks and Spatial Economics, 5(1) (2005) 217- 234.
[25] C.Q. Ho, C. Mulley, Multiple purposes at single destination: A key to a better understanding of the relationship between tour complexity and mode choice, Transportation Research Part A, 49(1) (2013) 206- 219.
[26] W. Navidi, Principles of statistics for engineers and scientists, First Edition, McGraw Hill, New York-USA, 2011.
[27] J.L. Bowman, Activity based Travel Demand Model System with Daily Activity Schedules, M.Sc. Thesis, Massachusetts Institute of Technology, USA, 1995.
[28] J.L. Bowman, The day activity schedule approach to travel demand analysis, Ph. D. thesis, Massachusetts Institute of Technology, USA, 1998.
[29] Qazvin transportation and traffic Comprehensive studies, Socioeconomic and Land use Report, Qazvin municipality, 2011, In Persian.