بررسی خواص ژئوتکنیکی خاکهای مسئله دار ضعیف بهسازی شده در کاربرد همزمان آهک، خاکستر بادی و ضایعات لاستیک

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد استهبان، دانشگاه آزاد اسلامی، استهبان، ایران

2 گروه مهندسی عمران، دانشکده فنی‌‌مهندسی، واحد کرمان، دانشگاه آزاد اسلامی، کرمان، ایران

چکیده

بسیاری از پروژه‌‌‌های عمرانی باید بر خاک‌های ضعیف و یا مسئله‌دار احداث شوند. گاهی بستر راه‌‌‌ها یا ساختگاه احداث بناها از رس‌‌های ضعیف و یا ماسه بادی تشکیل شده ان که جز با اصلاح خواص آنها قابل استفاده نیستند. از گذشته تاکنون آهک به عنوان یکی از مصالح اصلاح خاک  شناخته می‌شده است. گاهی نیز با کاربرد همزمان آهک و خاکستر بادی  چسبندگی خاک را افزایش می‌داده‌‌ اند. در مناطق گرم و کویری از این دو مصالح سنتی برای کاهش نشست پی و ایجاد لایه مستحکم در بستر راه‌‌‌ها استفاده می‌شود. از طرفی در سال‌‌‌های اخیر به دلیل کاهش اثرات منفی زیست محیطی، استفاده از لاستیک‌‌‌های فرسوده در بهسازی خاک مورد توجه قرار گرفته است. به دلیل عملکرد متفاوت افزودنی‌‌‌های سنتی با ضایعات لاستیک، بررسی تأثیر همزمان اجزاء  لاستیک فرسوده، مصالح سنتی و خاکستر بادی که در مناطق کویری ایران به فراوانی دیده می‌شود، ضرورت پیدا می‌کند. در این تحقیق تاثیر افزودن پودر لاستیک فرسوده و الیاف لاستیک بر روی خواص مکانیکی افزودنی آهک و آهک-خاکستر بادی بررسی شده است.  آزمایش‌‌‌ها و نتایج نشان می‌دهد که افزودن پودر لاستیک مقاومت فشاری خاک و سایر پارامتر‌‌‌های مقاومتی خاک بهسازی شده را افزایش می‌دهد. همچنین افزایش پودر لاستیک به مصالح بهسازی شده با مصالح سنتی افزایش شکل‌‌ پذیری را به همراه دارد. از طرفی استفاده از الیاف لاستیک به طور قابل توجهی مقاومت فشاری، شکل‌پذیری، مدول الاستیک، مدول حجمی(بالک)، مدول برجهندگی و مقاومت برشی را در تمام زمان‌‌‌های ‌عمل‌آوری بهبود می‌بخشد، ولی افزایش الیاف باعث کاهش کرنش شکست می‌گردد. بدیهی است که بهبود مشخصات ژئوت‌‌ کنیکی خاک بهسازی شده متناسب با انتخاب بهینه افزودنی و مسلح کننده می‌باشد. در یک نتیجه گیری کلّی  افزودن 12% پودر لاستیک فرسوده  و 1% الیاف لاستیک به آهک-خاکستر بادی مناسب‌‌ ترین نتیجه را برای بهسازی خاک ارائه می‌دهد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Evaluation of Geotechnical Properties in Weak Soils Stabilized by Combined Application of Lime, Fly-Ash, Geopolymer, and Scrap Tires

نویسندگان [English]

  • MEHRDAD AMINIZADEH 1
  • Mehdi Mokhberi 1
  • Mehdi Momeni Roghabadi 2
1 Ph. D. candidate, Department of Civil Engineering, Estahban Branch, Islamic Azad University, Estahban, Iran,
2 Department of Civil Engineering, Kerman Branch, Islamic Azad University, Kerman, Iran
چکیده [English]

A lot of civil engineering projects must be constructed on weak or problematic soils. In some cases, road subgrades or building foundations often consist of soft clays or windblown sands that necessitate soil improvement for usability. Lime has served as a conventional stabilizer, with combined lime-fly ash applications further enhancing soil cohesion. These traditional materials are widely used in desert and arid environments to mitigate foundation settlement and strengthen road subgrades. Recently, scrap tires have gained traction in soil stabilization due to their reduced environmental impact. However, the synergistic effects of rubber components (crumb rubber powder and rubber fibers) with traditional stabilizers remain unexplored, primarily because rubber incorporation weakens lime mortar strength. This study examines the influence of combined crumb rubber powder (0–30% at 4% increments) and rubber fibers (0–2%: 0%, 1%, 1.5%, 2%) on the mechanical properties of lime-treated and lime-fly ash-stabilized soils. Results indicate that crumb rubber powder slightly reduces the compressive strength of stabilized soil, whereas rubber fibers significantly improve compressive strength, ductility, failure strain, elastic modulus, bulk modulus, resilience modulus, and shear strength across all curing periods. Furthermore, the optimal combination is achieved with 12% crumb rubber and 1% rubber fibers added to lime-fly ash mixtures.

کلیدواژه‌ها [English]

  • Rubber Powder
  • Rubber Fibers
  • Fly Ash
  • Lime
  • Weak Soils
[1] J. Mitchell, Soil improvement: state-of-the-art: Department of Civil Engineering, University of California, 1981.
[2] M.R. Malekpoor, M.M. Toufigh, Laboratory study of soft soil improvement using lime mortar-(well graded) soil columns, J Geotechnical Testing Journal 33(3) (2010).
[3] M. Stefanidou, I. Papayianni, The role of aggregates on the structure and properties of lime mortars, Cement Concrete Composites, 27(9-10) (2005) 914-919.
[4] M. Saberian, S. Jahandari, J. Li, F. Zivari, Effect of curing, capillary action, and groundwater level increment on geotechnical properties of lime concrete: Experimental and prediction studies, Journal of Rock Mechanics Geotechnical Engineering, 9(4) (2017) 638-647.
[5] S. Jahandari, M. Saberian, Z. Tao, S.F. Mojtahedi, J. Li, M. Ghasemi, S.S. Rezvani, W. Li, Effects of saturation degrees, freezing-thawing, and curing on geotechnical properties of lime and lime-cement concretes, J Cold Regions Science Technology 160 (2019) 242-251.
[6] P.V. Sivapullaiah, J. Prashanth, A. Sridharan, Optimization of lime content for fly ash, Journal of testing and evaluation, 23(3) (1995) 222-227.
[7] P. Mehrabi, M. Shariati, K. Kabirifar, M. Jarrah, H. Rasekh, N.T. Trung, A. Shariati, S. Jahandari, Effect of pumice powder and nano-clay on the strength and permeability of fiber-reinforced pervious concrete incorporating recycled concrete aggregate, Construction and Building Materials, 287 (2021) 122652.
[8] F. Hanaei, M.S. Sarmadi, M. Rezaee, A. Rahmani, Experimental investigation of the effects of gas oil and benzene on the geotechnical properties of sandy soils, Innovative Infrastructure Solutions, 6(2) (2021) 1-8.
[9] M. Rezania, H. Moradnezhad, M. Panahandeh, M.J.R. Kami, A. Rahmani, B.V. Hosseini, Effects of diethanolamine (DEA) and glass fibre reinforced polymer (GFRP) on setting time and mechanical properties of shotcrete, Journal of Building Engineering, 31 (2020) 101343.
[10] V. Farhangi, M. Karakouzian, Effect of fiber reinforced polymer tubes filled with recycled materials and concrete on structural capacity of pile foundations, Applied Sciences, 10(5) (2020) 1554.
[11] M.M. Roshani, S.H. Kargar, V. Farhangi, M. Karakouzian, Predicting the effect of fly ash on concrete’s mechanical properties by ann, Sustainability, 13(3) (2021) 1469.
[12] B. Mehdizadeh, S. Jahandari, K. Vessalas, H. Miraki, H. Rasekh, B. Samali, Fresh, mechanical, and durability properties of self-compacting mortar incorporating alumina nanoparticles and rice husk ash, Materials, 14(22) (2021) 6778.
[13] S. Jahandari, M. Mohammadi, A. Rahmani, M. Abolhasani, H. Miraki, L. Mohammadifar, M. Kazemi, M. Saberian, M. Rashidi, Mechanical properties of recycled aggregate concretes containing silica fume and steel fibres, Materials, 14(22) (2021) 7065.
[14] L. Mohammadifar, H. Miraki, A. Rahmani, S. Jahandari, B. Mehdizadeh, H. Rasekh, P. Samadi, B. Samali, Properties of Lime-Cement Concrete Containing Various Amounts of Waste Tire Powder under Different Ground Moisture Conditions, Polymers, 14(3) (2022) 482.
[15] S. Jahandari, M. Mohammadi, A. Rahmani, M. Abolhasani, H. Miraki, L. Mohammadifar, M. Kazemi, M. Saberian, M. Rashidi, Mechanical properties of recycled aggregate concretes containing silica fume and steel fibres, J Materials 14(22) (2021) 7065.
[16] O. Azadegan, G.R. Pourebrahim, Effect of Geogrids on Compressive Strength and Elasticity Modulus of Lime/Cement Treated Soils, Electronic Journal of Geotechnical Engineering (EJGE), 15(2010) (2010) 1571.
[17] V. Farhangi, M. Karakouzian, Effect of fiber reinforced polymer tubes filled with recycled materials and concrete on structural capacity of pile foundations, J Applied Sciences, 10(5) (2020) 1554.
[18] O. Azadegan, G.R. Pourebrahim, Effect of Geogrids on Compressive Strength and Elasticity Modulus of Lime/Cement Treated Soils, J Electrical Journal of Geotechnical Engineering, 15 (2010) 1571-1580.
[19] S. Jahandari, J. Li, M. Saberian, M. Shahsavarigoughari, Experimental study of the effects of geogrids on elasticity modulus, brittleness, strength, and stress-strain behavior of lime stabilized kaolinitic clay, GeoResJ, 13 (2017) 49-58.
[20] S. Jahandari, S.F. Mojtahedi, F. Zivari, M. Jafari, M.R. Mahmoudi, A. Shokrgozar, S. Kharazmi, B. Vosough Hosseini, S. Rezvani, H. Jalalifar, The impact of long-term curing period on the mechanical features of lime-geogrid treated soils, J Geomechanics Geoengineering, 17(1) (2022) 269-281.
[21] S. Jahandari, Z. Tao, M.A. Alim, Effects of different integral hydrophobic admixtures on the properties of concrete, in:  Proceedings of the 30th Biennial National Conference of the Concrete Institute of Australia, Perth, Australia, 2021, pp. 5-8.
[22] L. Mohammadifar, H. Miraki, A. Rahmani, S. Jahandari, B. Mehdizadeh, H. Rasekh, P. Samadi, B. Samali, Properties of lime-cement concrete containing various amounts of waste tire powder under different ground moisture conditions, Polymers, 14(3) (2022) 482.
[23] B. Phani Kumar, R.S.J.J.o.G. Sharma, G. Engineering, Effect of fly ash on engineering properties of expansive soils, 130(7) (2004) 764-767.
[24] P. Dahale, P. Nagarnaik, A. Gajbhiye, Effect OF flyash and lime on stabilization of expansive soil, J Journal on Civil Engineering, 6(2) (2016) 8.
[25] C.H. Signes, J. Garzón-Roca, P.M. Fernández, M.E.G. de la Torre, R.I. Franco, Swelling potential reduction of Spanish argillaceous marlstone Facies Tap soil through the addition of crumb rubber particles from scrap tyres, Applied Clay Science, 132 (2016) 768-773.
[26] D. Akbarimehr, E.J.C.E.J. Aflaki, An experimental study on the effect of tire powder on the geotechnical properties of clay soils, 4(3) (2018) 594-601.
[27] S. Ghareh, F. Akhlaghi, K.J.J.o.R.i.C.E. Yazdani, A Study on the Effects of Waste Rubber Tire Dimensions on Fine-Grained Soil Behavior, 8(3) (2020) 15-33.
[28] D. Akbarimehr, K.J.S.D. Fakharian, E. Engineering, Dynamic shear modulus and damping ratio of clay mixed with waste rubber using cyclic triaxial apparatus, 140 (2021) 106435.
[29] D. Akbarimehr, A. Rahai, A. Eslami, M.J.S. Karakouzian, Deformation characteristics of rubber waste powder–clay mixtures, 15(16) (2023) 12384.
[30] D. Czarna-Juszkiewicz, P. Kunecki, J. Cader, M.J.M. Wdowin, Review in waste tire management—potential applications in mitigating environmental pollution, 16(17) (2023) 5771.
[31] A. Eslami, D. Akbarimehr, A. Rahai, M.J.H. Karakouzian, Investigation of constitutive properties of high plasticity clay soils mixed with crushed rubber tire waste, 10(5 (2024).
[32] S. Gücek, C. Gürer, B. Žlender, M.V. Taciroğlu, B.E. Korkmaz, K. Gürkan, T. Bračko, B. Macuh, R. Varga, P.J.A.S. Jelušič, Use of Lignin, Waste Tire Rubber, and Waste Glass for Soil Stabilization, 14(17) (2024) 7532.
[33] M.R. Hassan, D.J.S. Rodrigue, Application of Waste Tire in Construction: A Road towards Sustainability and Circular Economy, 16(9) (2024) 3852.
[34] A. Hejna, P. Kosmela, A. Olszewski, Ł. Zedler, K. Formela, K. Skórczewska, A. Piasecki, M. Marć, R. Barczewski, M.J.E.S. Barczewski, P. Research, Management of ground tire rubber waste by incorporation into polyurethane-based composite foams, 31(12) (2024) 17591-17616.
[35] R. Showkat, B. Mir, K.S.J.G. Wani, Geoengineering, Experimental investigation on reuse of dredged soils improved using waste rubber tyre powder (WRTP) and cement as admixtures,  (2024) 1-15.
[36] D. Akbarimehr, S.M.M.M.J.A.J.o.G. Hosseini, Elasto-plastic characteristics of the clay soil mixed with rubber waste using cyclic triaxial test results, 15(14) (2022) 1280.
[37] A. C25-19, Standard test methods for chemical analysis of limestone, quicklime, and hydrated lime, in, ASTM International West Conshohocken, PA, 2019.
[38] M. Kazemi, M. Hajforoush, P.K. Talebi, M. Daneshfar, A. Shokrgozar, S. Jahandari, M. Saberian, J. Li, In-situ strength estimation of polypropylene fibre reinforced recycled aggregate concrete using Schmidt rebound hammer and point load test, Journal of Sustainable Cement-Based Materials, 9(5) (2020) 289-306.
[39] A. Afshar, S. Jahandari, H. Rasekh, M. Shariati, A. Afshar, A. Shokrgozar, Corrosion resistance evaluation of rebars with various primers and coatings in concrete modified with different additives, Construction and Building Materials, 262 (2020) 120034.
[40] M. Saberian, M. Mehrinejad Khotbehsara, S. Jahandari, R. Vali, J. Li, Experimental and phenomenological study of the effects of adding shredded tire chips on geotechnical properties of peat, International Journal of Geotechnical Engineering, 12(4) (2018) 347-356.
[41] A. Toghroli, P. Mehrabi, M. Shariati, N.T. Trung, S. Jahandari, H. Rasekh, Evaluating the use of recycled concrete aggregate and pozzolanic additives in fiber-reinforced pervious concrete with industrial and recycled fibers, Construction and Building Materials, 252 (2020) 118997.
[42] H. Rasekh, A. Joshaghani, S. Jahandari, F. Aslani, M. Ghodrat, Rheology and workability of SCC, in:  Self-compacting concrete: materials, properties and applications, Elsevier, 2020, pp. 31-63.
[43] R. Vali, E. Mehrinejad Khotbehsara, M. Saberian, J. Li, M. Mehrinejad, S. Jahandari, A three-dimensional numerical comparison of bearing capacity and settlement of tapered and under-reamed piles, International Journal of Geotechnical Engineering, 13(3) (2019) 236-248.
[44] A. Darvishi, H. Vosoughifar, S. Saeidijam, M. Torabi, A. Rahmani, An experimental and prediction study on the compaction and swell–expansion behavior of bentonite clay containing various percentages of two different synthetic fibers, Innovative Infrastructure Solutions, 5(1) (2020) 1-15.
[45] F. Sadeghian, S. Jahandari, A. Haddad, H. Rasekh, J. Li, Effects of variations of voltage and pH value on the shear strength of soil and durability of different electrodes and piles during electrokinetic phenomenon, Journal of Rock Mechanics and Geotechnical Engineering, 14(2) (2022) 625-636.
[46] P. Mehrabi, S. Honarbari, S. Rafiei, S. Jahandari, M. Alizadeh Bidgoli, Seismic response prediction of FRC rectangular columns using intelligent fuzzy-based hybrid metaheuristic techniques, Journal of Ambient Intelligence and Humanized Computing, 12(11) (2021) 10105-10123.
[47] M. Parsajoo, D.J. Armaghani, A.S. Mohammed, M. Khari, S. Jahandari, Tensile strength prediction of rock material using non-destructive tests: A comparative intelligent study, Transportation Geotechnics, 31 (2021) 100652.
[48] S. Jahandari, Z. Tao, M. Saberian, M. Shariati, J. Li, M. Abolhasani, M. Kazemi, A. Rahmani, M. Rashidi, Geotechnical properties of lime-geogrid improved clayey subgrade under various moisture conditions, Road Materials and Pavement Design, 23(9) (2022) 2057-2075.
[49] M. Kazemi, M. Daneshfar, Y. Zandi, A. Sadighi Agdas, N. Yousefieh, L. Mohammadifar, A. Rahmani, M. Saberian, A. Mamdouh, M.A. Khadimallah, Effects of the Concrete Strength and FRP Reinforcement Type on the Non-Linear Behavior of Concrete Deep Beams, Sustainability, 14(7) (2022) 4136.
[50] ASTM, 5102 Standard Test Method for Unconfined Compressive Strength of Compacted Soil-Lime Mixtures, in: ASTM D, 1996.
[51] K.J.J.o.t. Fishman, Testing techniques for measurement of bulk modulus, Journal of testing evaluation
22(2) (1994) 161-167.
[52] S. Ghourchian, M. Wyrzykowski, P. Lura, The bleeding test: A simple method for obtaining the permeability and bulk modulus of fresh concrete, Cement and Concrete Research, 89 (2016) 249-256.
[53] A. T307-99, Standard method of test for determining the resilient modulus of soils and aggregate materials, in, American Association of State Highway and Transportation Officials …, 2017.