[1] M. Liang, K. Feng, C. He, Y. Li, L. An, W. Guo, A meso-scale model toward concrete water permeability regarding aggregate permeability, Construction and Building Materials, 261 (2020) 120547.
[2] A. Akkaya, İ.H. Çağatay, Investigation of the density, porosity, and permeability properties of pervious concrete with different methods, Construction and Building Materials, 294 (2021) 123539.
[3] W. Xue, H. Zhang, H. Li, W. Xu, Effect of early age loading on the subsequent mechanical and permeability properties of concrete and its mechanism analysis, Journal of Materials Research and Technology, 14 (2021) 1208-1221.
[4] N. Fanaie, S. Aghajani, E.A. Dizaj, Theoretical assessment of the behavior of cable bracing system with central steel cylinder, Advances in structural engineering, 19(3) (2016) 463-472.
[5] E. Jahanbakhti, N. Fanaie, A. Rezaeian, Experimental investigation of panel zone in rigid beam to box column connection, Journal of Constructional Steel Research, 137 (2017) 180-191.
[6] M. Dashtibadfarid, M. Afrasiabi, Low-permeability concrete: Water-to-cement ratio optimization for designing drinking water reservoirs, Int. J. Innov. Eng. Sci, 2 (2017) 20-24.
[7] P. Halamickova, R.J. Detwiler, D.P. Bentz, E.J. Garboczi, Water permeability and chloride ion diffusion in Portland cement mortars: relationship to sand content and critical pore diameter, Cement and concrete research, 25(4) (1995) 790-802.
[8] L. Kong, Y. Ge, Mechanism study of effect of coarse aggregate size on permeability of concrete, ACI Materials Journal, 112(6) (2015) 767.
[9] H. Liu, G. Luo, H. Wei, H. Yu, Strength, permeability, and freeze-thaw durability of pervious concrete with different aggregate sizes, porosities, and water-binder ratios, Applied Sciences, 8(8) (2018) 1217.
[10] I.G. Amadi, K.I. Amadi-Oparaeli, Effect of admixtures on strength and permeability of concrete, The International Journal of Engineering and Science, 7(7) (2018) 1-7.
[11] Y. Yuan, Y. Chi, Water permeability of concrete under uniaxial tension, Structural Concrete, 15(2) (2014) 191-201.
[12] M.B.A. Houaria, M. Abdelkader, C. Marta, K. Abdelhafid, Comparison between the permeability water and gas permeability of the concretes under the effect of temperature, Energy Procedia, 139 (2017) 725-730.
[13] D. fur Normung, Testing Concrete: Testing of Hardened Concrete (Specimens Prepared in Mould) DIN 1048 Part 5 1991, in, Germany, 1991.
[14] B. Standard, Testing hardened concrete, Compressive Strength of Test Specimens, BS EN, (2009) 12390-12393.
[15] M. Hassani, K. Vessalas, V. Sirivivatnanon, D. Baweja, Influence of permeability-reducing admixtures on water penetration in concrete, ACI Mater. J, 114 (2017) 911-922.
[16] M. Naderi, Determine of concrete, stone, mortar, brick and other construction materials permeability with cylindrical chamber method, Registration of Patent in Companies and industrial property Office, (2010).
[17] A. Mardani-Aghabaglou, A. Nematzadeh, E. Geven, Effect of utilization of different type of mineral admixture on fresh and hardened properties of cementitious systems, Sakarya University Journal of Science, 23(2) (2019) 213-223.
[18] R. Ramkrishnan, B. Abilash, M. Trivedi, P. Varsha, P. Varun, S. Vishanth, Effect of mineral admixtures on pervious concrete, Materials Today: Proceedings, 5(11) (2018) 24014-24023.
[19] B.B. Jindal, D. Singhal, S. Sharma, J. Parveen, Enhancing mechanical and durability properties of geopolymer concrete with mineral admixture, Computers and concrete, 21(3) (2018) 345-353.
[20] S. Kate, P. Jamale, To investigate the effect of permeability properties on hsc using different mineral admixture, J Adv Sch Res Allied Educ, 15(2) (2018) 314-318.
[21] X. Cui, J. Zhang, D. Huang, Z. Liu, F. Hou, S. Cui, L. Zhang, Z. Wang, Experimental study on the relationship between permeability and strength of pervious concrete, Journal of Materials in Civil Engineering, 29(11) (2017) 04017217.
[22] M. Naderi, Assessing the in situ strength of concrete, using new twist-off method, (2006).
[23] M. Naderi, R. Shibani, New Method for Nondestructive Evaluation of Concrete Strength, Aust, J. Basic Appl. Sci, 7(2) (2013) 438-447.
[24] M. Naderi, Using twist-off method for measuring surface strength of concretes cured under different environments, Journal of Materials in Civil Engineering, 23(4) (2011) 385-392.
[25] M. Naderi, A. Saberi Varzaneh, Determination of Compressive and Flexural Strengths of In-situ Pozzolanic Concrete Containing Polypropylene and Glass Fibers Using" Twist-off" Method, Modares Civil Engineering journal, 20(5) (2020) 117-129.
[26] M. Naderi, A. Esmaeli, A. Saberi Varzaneh, Assessment of the application, Journal of Structural and Construction Engineering, 8(3) (2021) 23-41.
[27] A.S. Varzaneh, M. Naderi, Numerical and experimental study of semi-destructive tests to evaluate the compressive and flexural strength of polymer-modified mortars and their adhesion to the concrete substrate, Revista Romana de Materiale, 50(4) (2020) 537-544.
[28] A. Saberi Vaezaneh, M. Naderi, The effect of initial compression on the interface of repair/concrete and the evaluation of the compressive strength of mortars, Journal of Structural and Construction Engineering, 9(5) (2022).
[29] A.S. Varzaneh, M. Naderi, Determination of shrinkage, tensile and compressive strength of repair mortars and their adhesion on the concrete substrate using" twist-off" and" pull-off" methods, Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45(4) (2021) 2377-2395.
[30] A. Saberi Varzaneh, M. Naderi, The effects of pre-compress on the mortar/concrete bond and their in-situ compressive strength using “pull-off” and “twist-off” methods, International Journal of Advanced Structural Engineering, 12(1) (2022) 571-589.
[31] V.A. Saberi, M. Naderi, Investigation of In-Situ Compressive Strength of Fiber-Reinforced Mortar and the Effect of Fibers on the Adhesion of Mortar/Steel, Advanced design and manufacturing technology,14(2) (2021) 37-48.
[32] A.S. Varzaneh, M. Naderi, Using" twist-off" and" pull-off" tests to investigate the effect of polypropylene fibers on the bond of mortar/concrete and to evaluate their in-situ compressive strength, Amirkabir Civil Engineering Journal, 23(6) (2021) 47-58.
[33] M. Naderi, M. Nasiri, A. Saberi Vaezaneh, Evaluation of surface strength of self-compacting concrete under shrinkage and magnesium sulfate using" twist-off" method, Journal of Structural and Construction Engineering, 9(6) (2022) 1-17.
[34] A.S. Varzaneh, M. Naderi, The effects of pre-compress on the mortar/concrete bond and their in-situ compressive strength using “pull-off” and “twist-off” methods, International Journal of Advanced Structural Engineering, 12(1) (2022) 571-589.
[35] A.S. Varzaneh, M. Naderi, syudy of bond strength between fiber-Reinforcedmortar steel & their mechanical properties using push-out, "twist-off"& "pull-off" methods.Revista Română de Materiale, 51(2) (2021) 228-238.
[36] A. ASTM C642, Standard test method for density, absorption, and voids in hardened concrete, ASTM, ASTM International, (2013).
[37] B. EN, 12390-3 Testing Hardened Concrete: Compressive Strength of Test Specimens; 17/30360096 DC, BSI: London, UK, (2009).
[38] A. International, ASTM C136-01, Standard Test Method for Sieve Analysis of Fine and Coarse Aggregates, ASTM International, West Conshohocken, PA, (2001).
[39] C. ASTM, Standard test method for density, relative density (specific gravity), and absorption of fine aggregate, (2012).
[40] A. Standard, C128-12, Standard Test Method for Density, Relative Density (Specific Gravity), and Absorption of Fine Aggregate, ASTM International, West Conshohocken, PA, (2012).
[41] G.R. Mass, Proportioning Mass Concrete a Incorporating Pozzolans Using ACI 211. 1, Concrete International, 4(8) (1982) 48-55.
[42] ASTM, ASTM C1202: Standard test method for electrical indication of concrete's ability to resist chloride ion penetration, American Social Test. Materials, 4(2) (2012) 1-8.
[43] ASTM, ASTM C494: Standard specification for chemical admixtures for concrete, in, ASTM West Conshohocken, PA, USA, 2005.