تحلیل حساسیت‌ بر پایه قابلیت اعتماد قاب برشی مجهز شده به میراگر ویسکوز غیرخطی

نوع مقاله : مقاله پژوهشی

نویسنده

دانشکده مهندسی عمران، دانشگاه شهید مدنی آذربایجان، تبریز، ایران

چکیده

اخیراً میراگرهای ویسکوز غیرخطی به صورت گسترده‌ای برای بهبود عملکرد لرزه‌ای سازه‌ها مورد استفاده قرار گرفته‌اند. این میراگرها انرژی جنبشی ناشی از زلزله را با تولید نیروی میرایی مستهلک می‌کنند. طراحی این میراگرها به گونه‌ای است که نیروی ایجاد شده در آن‌ها متناسب با سرعت است. مدل ماکسول متداول‌ترین مدل برای مدل‌سازی رفتار میراگرهای ویسکوز غیرخطی می‌باشد. در این مدل ضریب میرایی، توان سرعت و سختی محوری میراگر پارامترهای کلیدی محسوب می‌شوند. در اکثر مطالعات گذشته، عدم ‌قطعیت موجود در پارامترهای درگیر در رفتار میراگر ویسکوز نادیده گرفته شده است؛ در حالی که می‌تواند تأثیر قابل توجهی بر روی پاسخ لرزه‌ای سازه‌ها داشته باشد. در این مطالعه ابتدا تحلیل قابلیت اعتماد یک قاب برشی مجهز شده به میراگر ویسکوز غیرخطی با استفاده از روش نمونه‌گیری مونت‌کارلو انجام شده است. نتایج نشان می‌دهد که افزایش دریفت بیشینه از 0/015 به0/02 منجر به کاهش 72 درصدی احتمال انهدام شده ‌است. سپس تحلیل حساسیت‌ مبتنی بر قابلیت اعتماد قاب مورد مطالعه به منظور تعیین مؤثرترین متغیر تصادفی بر روی قابلیت اعتماد قاب انجام شده است. نتایج نشان می‌دهد که توان سرعت مؤثرترین متغیر تصادفی در قابلیت اعتماد قاب می‌باشد. همچنین نتایج دلالت بر آن دارند که میزان اهمیت متغیرهای تصادفی بستگی به تابع حالت حدی مورد استفاده در تحلیل قابلیت اعتماد دارد. برای نمونه مقدار اهمیت متغیر تصادفی ضریب میرایی نسبت به توان سرعت به ازای دریفت بیشینه 0/015 و 0/025 به ترتیب 59 و 9/5 درصد کمتر است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Reliability-based Sensitivity Analysis of Shear Frame Equipped with Nonlinear Viscous Damper

نویسنده [English]

  • Mohammadreza Seify Asghshahr
Assistant Professor Department of Civil Engineering Azarbaijan Shahid Madani University
چکیده [English]

Recently, nonlinear viscous dampers have been widely used to improve the seismic performance of structures. These dampers dissipate the kinetic energy caused by the earthquake by producing a damping force. These dampers are designed in such a way that the force is proportional to the velocity. The Maxwell model is the most common model for modeling the behavior of nonlinear viscous dampers. In this model, the damping coefficient, the velocity exponent and the axial stiffness of the dampers are the key parameters. In most previous studies, the uncertainty of the underlying parameters in the behavior of viscous dampers has been ignored while it can has a significant effect on the seismic response of structures. In this study, first, the reliability analysis of a shear frame equipped with a nonlinear viscous damper was performed using the Monte Carlo sampling method. The results show that increasing the maximum drift from 0.015 to 0.02 reduces the probability of failure by 72%. Then, a reliability-based sensitivity analysis of the studied frame was performed in order to determine the most effective random variable on the reliability of the frame. The results show that the velocity exponent is the most effective random variable on the reliability of the frame. Also, results indicate that the importance of random variables depends on the used limit state function in the reliability analysis. For example, the importance value of the damping coefficient is 59% and 9.5% less than the velocity exponent with respect to the maximum drift of 0.015 and 0.025, respectively.

کلیدواژه‌ها [English]

  • Nonlinear Viscous Damper
  • Shear Frame
  • Reliability
  • Sensitivity Analysis
  • Monte Carlo Sampling
[1] T. Soong, and G. Dargush, Passive energy dissipation systems in structural engineering, John Wiley & Sons: Chichester, United Kingdom (1997).
[2] C. Christopoulos, A. Filiatrault, Principles of supplemental damping and seismic isolation, IUSS Press: Milan, Italy, (2006).
[3] M. Symans, F. Charney, A. Whittaker, M. Constantinou, C. Kircher, M. Johnson, and R. McNamara, Energy dissipation systems for seismic applications: current practice and recent developments, Journal of Structural Engineering, 134(1) (2008) 3-21.
[4] I. Takewaki, Building control with passive dampers: optimal performance-based design for earthquakes, John Wiley & Sons: Asia, Singapore, (2011).
[5] M.C. Constantinou, T.T. Soong, and G.F. Dargush, Passive energy dissipation systems for structural design and retrofit, Multidisciplinary Center for Earthquake Engineering Research, University of Buffalo, USA, (1998).
[6] K. Kasai, A. Mita, H. Kitamura, K. Matsuda, T.A. Morgan, and A.W. Taylor, Performance of seismic protection technologies during the 2011 Tohoku-Oki Earthquake. Earthquake Spectra, 29(S1) (2013) 265-293.
[7] E. Miranda, G. Mosqueda, R. Retamales, and G. Pekcan, Performance of nonstructural components during the 27 February 2010 Chile Earthquake, Earthquake Spectra, 28(S1) (2012) 453-471.
[8] M.C. Constantinou, and M.D. Symans, Experimental study of seismic response of buildings with supplemental fluid dampers, The Structural Design of Tall and Special Buildings, 2(2) (1993) 93-132.
[9] M. Martinez-Rodrigo, and M.L. Romero, An optimum retrofit strategy for moment resisting frames with nonlinear viscous dampers for seismic applications, Engineering Structures, 25 (2003) 913-925.
[10] M.D. Di Paola, L.L. Mendola, and G. Navarra, Stochastic seismic analysis of structures with nonlinear viscous dampers, Journal of Structural Engineering, 133 (2007) 1475-1478.
[11] E.M. Guneyisi, and G. Altay, Seismic fragility assessment of effectiveness of viscous dampers in R/C buildings under scenario earthquakes, Structural Safety 30 (2008) 461-480.
[12] O. Lavan, and M. Avishur, Seismic behavior of viscously damped yielding frames under structural and damping uncertainties, Bulletin of Earthquake Engineering, 11 (2013) 2309-2332.
[13] J.I. Colombo, and J.L. Almazan, Seismic reliability of continuously supported steel wine storage tanks retrofitted with energy dissipation devices, Engineering Structures, 98 (2015) 201-211.
[14] A. Dall’Asta, E. Tubaldi, and L. Rangi, Influence of the nonlinear behavior of viscous dampers on the seismic demand hazard of building frames, Earthquake Engineering and Structural Dynamics, 45 (2016) 149-169.
[15] D. Altieri, E. Tubaldi, M. Broggi, and E. Patelli, Reliability-based methodology for the optimal design of viscous dampers, In 14th International Probabilistic Workshop, Springer, Cham, pp. 427-439, (2017).
[16] S. Akcelyan, D.G. Lignos, and T. Hikino, Adaptive numerical method algorithms for nonlinear viscous and bilinear oil damper models subjected to dynamic loading, Soil Dynamics and Earthquake Engineering, 113 (2018) 488-502.
[17] J.C. Maxwell, On the dynamical theory of gases, Philosophical Transactions of the Royal Society of London Series, 157 (1867) 49-88.
[18] N. Makris N, and M. Constantinou, Fractional-derivative maxwell model for viscous dampers, Journal of Structural Engineering, 117(9) (1991) 2708-2724.
[19] M. Singh, N. Verma, and L. Moreschi, Seismic analysis and design with maxwell dampers, Journal of Engineering Mechanics, 129(3) (2003) 273-282.
[20] H. Ataei, and K. Kalbasi Anaraki, A proposed structural design method considering fluid viscous damper degradations, The Structural Design of Tall and Special Buildings, 27(15) (2018) e1512.
[21] N. Pollini, O. Lavan, and O. Amir, Adjoint sensitivity analysis and optimization of hysteretic dynamic systems with nonlinear viscous dampers, Structural and Multidisciplinary Optimization, 57 (2018) 2273-2289.
[22] N. Pollini, O. Lavan, and O. Amir, Minimum-cost optimization of nonlinear fluid viscous dampers and their supporting members for seismic retrofitting, Earthquake Engineering and Structural Dynamics, 46(12) (2017) 1941-1961.
[23] P. Bjerager, and S. Krenk, Parametric sensitivity in first order reliability theory, Journal of Engineering Mechanics, 115(7) (1989) 1577-1582.
[24] H. Talebiyan, and M. Mahsuli, Sampling-Based reliability sensitivity analysis using direct differentiation, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part A: Civil Engineering, 6(2) (2020) 04020015.
[25] F. McKenna, OpenSees: a framework for earthquake engineering simulation, Computing in Science and Engineering, 13(4) (2011) 58-66.
[26] J.W. Baker, Conditional mean spectrum: Tool for ground-motion selection, Journal of Structural Engineering, 137(3) (2011) 322-331.
[27] A. Shapiro, Monte Carlo sampling methods, Handbooks in Operations Research and Management Science, 10 (2003) 353-425.
[28] M. Mahsuli, and T. Haukaas, Computer program for multimodel reliability and optimization analysis, Journal of Computing in Civil Engineering, 27(1) (2013) 87-98.
[29] D. Shen, and S. Kookalani, S. Effect of fluid viscous damper parameters on the seismic performance, Journal of Civil Engineering and Materials Application, 4(3) (2020) 141-153.
[30] K. Kasai, and K. Matsuda, Full-scale dynamic testing of response-controlled buildings and their components: concepts, methods, and findings, Earthquake Engineering and Engineering Vibration, 13(1) (2014) 167-181.
[31] B. Dong, R. Sause, and J.M. Ricles, Accurate real-time hybrid earthquake simulations on large-scale MDOF steel structure with nonlinear viscous dampers, Earthquake Engineering and Structural Dynamics, 44(12) (2015) 2035-2055.
[32] ViscousDamper, ViscousDamper material, OpenSeesWiki online manual, Available at: https://opensees.berkeley.edu/wiki/index.php/ViscousDamper_Material (Aug. 03, 2021).
[33] S. Öncü-Davas, and C. Alhan, Reliability of semi-active seismic isolation under near-fault earthquakes, Mechanical Systems and Signal Processing, 114 (2019) 146-164.
[34] M. Mahsuli, Probabilistic models, methods, and software for evaluating risk to civil infrastructure, Doctoral dissertation, University of British Columbia, (2012).
[35] ASCE/SEI 7-16, Minimum Design Loads and Associated Criteria for Buildings and Other Structures, American Society of Civil Engineering, Washington, D. C, USA, (2016).