[1] V. Yepes, C. Torres-Machi, A. Chamorro, E. Pellicer, Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm, Journal of Civil Engineering and Management, 22(4) (2016) 540-550.
[2] M.G. Augeri, S. Greco, V. Nicolosi, Planning urban pavement maintenance by a new interactive multiobjective optimization approach, European Transport Research Review, 11(1) (2019) 1-14.
[3] Z. Mao, Life-Cycle Assessment of Highway Pavement Alternatives in Aspects of Economic, Environmental, and Social Performance, Texas A & M University, 2012.
[4] M. Hossain, L.S.P. Gopisetti, M.S. Miah, Artificial neural network modelling to predict international roughness index of rigid pavements, International Journal of Pavement Research and Technology, (2020) 1-11.
[5] D.G. Mapa, M. Gunaratne, K.A. Riding, A. Zayed, Evaluating Early-Age Stresses in Jointed Plain Concrete Pavement Repair Slabs, ACI Materials Journal, 117(4) (2020).
[6] L.F. Facts, National Asphalt Pavement Association (NAPA), Landham, MD, no date, in, 2007.
[7] M.Y. Shahin, Pavement management for airports, roads, and parking lots, 1994.
[8] X. Yang, Z. You, J.E. Hiller, M.R. Mohd Hasan, A. Diab, S. Luo, Sensitivity of Rigid Pavement Performance Predictions to Individual Climate Variables using Pavement ME Design, Journal of Transportation Engineering, Part B: Pavements, 146(3) (2020) 04020028.
[9] W.A. Van, Rigid pavement pumping:(1) subbase erosion and (2) economic modeling: informational report, (1985).
[10] J.-H. Jeong, D.G. Zollinger, Characterization of stiffness parameters in design of continuously reinforced and jointed pavements, Transportation Research Record, 1778(1) (2001) 54-63.
[11] Y. Chen, R.L. Lytton, Development of a new faulting model in jointed concrete pavement using LTPP data, Transportation Research Record, 2673(5) (2019) 407-417.
[12] Y.S. Jung, D.G. Zollinger, New Laboratory-Based Mechanistic–Empirical Model for Faulting in Jointed Concrete Pavement, Transportation research record, 2226(1) (2011) 60-70.
[13] K.N. Bakhsh, D. Zollinger, Faulting prediction model for design of concrete pavement structures, in: Pavement Materials, Structures, and Performance, 2014, pp. 327-342.
[14] A. Simpson, J. Rauhut, P. Jordahl, E. Owusu-Antwi, M. Darter, R. Ahmad, O. Pendleton, Y. Lee, Early analyses of LTPP general pavement studies data, Sensitivity Analyses for Selected Pavement Distresses, (1993).
[15] H. Yu, K. Smith, M. Darter, J. Jiang, L. Khazanovich, Performance of concrete pavements. Volume III: Improving concrete pavement performance, 1998.
[16] Aashto, Guide for the local calibration of the mechanistic-empirical pavement design guide, in, American Association of State Highway and Transportation Officials …, 2010.
[17] H.-W. Ker, Y.-H. Lee, C.-H. Lin, Development of faulting prediction models for rigid pavements using LTPP database, Statistics, 218(0037.0) (2008) 0037.0030.
[18] B. Saghafi, A. Hassani, R. Noori, M.G. Bustos, Artificial neural networks and regression analysis for predicting faulting in jointed concrete pavements considering base condition, International Journal of Pavement Research and Technology, 2(1) (2009) 20-25.
[19] W.-N. Wang, Y.-C.J. Tsai, Back-propagation network modeling for concrete pavement faulting using LTPP data, International Journal of Pavement Research and Technology, 6(5) (2013) 651.
[20] P. Lu, D. Tolliver, Pavement treatment short-term effectiveness in IRI change using long-term pavement program data, Journal of transportation engineering, 138(11) (2012) 1297-1302.
[22] V. Safak, Min-Mid-Max Scaling, Limits of Agreement, and Agreement Score, arXiv preprint arXiv:2006.12904, (2020).
[23] A. Moniri, H. Ziari, A. Amini, M. Hajiloo, Investigating the ANN model for cracking of HMA in terms of temperature, RAP and fibre content, International Journal of Pavement Engineering, (2020) 1-13.
[24] M. Younos, R. Abd El-Hakim, S. El-Badawy, H. Afify, Multi-input performance prediction models for flexible pavements using LTPP database, Innovative Infrastructure Solutions, 5(1) (2020) 1-11.
[25] E. Heidari, M.A. Sobati, S. Movahedirad, Accurate prediction of nanofluid viscosity using a multilayer perceptron artificial neural network (MLP-ANN), Chemometrics and intelligent laboratory systems, 155 (2016) 73-85.
[26] G. Sollazzo, T. Fwa, G. Bosurgi, An ANN model to correlate roughness and structural performance in asphalt pavements, Construction and Building Materials, 134 (2017) 684-693.
[27] A. Kostopoulos, T. Grapsa, Self-scaled conjugate gradient training algorithms, Neurocomputing, 72(13-15) (2009) 3000-3019.
[28] A.A. Suratgar, M.B. Tavakoli, A. Hoseinabadi, Modified Levenberg-Marquardt method for neural networks training, World Acad Sci Eng Technol, 6(1) (2005) 46-48.
[29] R. Dhaigude, S. Ajmera, Modelling of Groundwater Level Using Artificial Neural Network.
[30] M.H. Esfe, H. Hajmohammad, R. Moradi, A.A.A. Arani, Multi-objective optimization of cost and thermal performance of double walled carbon nanotubes/water nanofluids by NSGA-II using response surface method, Applied Thermal Engineering, 112 (2017) 1648-1657.
[31] T. Vo-Duy, D. Duong-Gia, V. Ho-Huu, H.C. Vu-Do, T. Nguyen-Thoi, Multi-objective optimization of laminated composite beam structures using NSGA-II algorithm, Composite Structures, 168 (2017) 498-509.
[32] A. Kumar, H. Majumder, K. Vivekananda, K. Maity, NSGA-II approach for multi-objective optimization of wire electrical discharge machining process parameter on inconel 718, Materials Today: Proceedings, 4(2) (2017) 2194-2202.
[33] J.-L. Chen, H.-B. Liu, W. Wu, D.-T. Xie, Estimation of monthly solar radiation from measured temperatures using support vector machines–a case study, Renewable Energy, 36(1) (2011) 413-420.
[34] Z. He, X. Wen, H. Liu, J. Du, A comparative study of artificial neural network, adaptive neuro fuzzy inference system and support vector machine for forecasting river flow in the semiarid mountain region, Journal of Hydrology, 509 (2014) 379-386.
[35] R. Genuer, J.-M. Poggi, C. Tuleau-Malot, Variable selection using random forests, Pattern recognition letters, 31(14) (2010) 2225-2236.
[36] U. Grömping, Variable importance assessment in regression: linear regression versus random forest, The American Statistician, 63(4) (2009) 308-319.
[37] W. Zhang, C. Wu, Y. Li, L. Wang, P. Samui, Assessment of pile drivability using random forest regression and multivariate adaptive regression splines, Georisk: Assessment and Management of Risk for Engineered Systems and Geohazards, 15(1) (2021) 27-40.
[38] H. Gong, Y. Sun, X. Shu, B. Huang, Use of random forests regression for predicting IRI of asphalt pavements, Construction and Building Materials, 189 (2018) 890-897.
[39] H. Gong, Y. Sun, W. Hu, P.A. Polaczyk, B. Huang, Investigating impacts of asphalt mixture properties on pavement performance using LTPP data through random forests, Construction and Building Materials, 204 (2019) 203-212.
[40] D. Daneshvar, A. Behnood, Estimation of the dynamic modulus of asphalt concretes using random forests algorithm, International Journal of Pavement Engineering, (2020) 1-11.
[41] C. Strobl, A.-L. Boulesteix, T. Kneib, T. Augustin, A. Zeileis, Conditional variable importance for random forests, BMC bioinformatics, 9(1) (2008) 1-11.