پیش‌بینی دبی نشت و فشار پیزومتریک در سدهای خاکی با استفاده از مدل‌های محاسبات نرم (مطالعه موردی: سد شهید کاظمی بوکان)

نوع مقاله : مقاله پژوهشی

نویسنده

استادیار، گروه مهندسی آب، دانشکده مهندسی عمران و نقشه بردار، دانشگاه تحصیلات تکمیلی کرمان

چکیده

سدهای خاکی همواره یکی از مؤلفه‌های اصلی پروژه‌های حفاظت آب‌وخاک هستند. امروزه تخمین دقیق فشار پیزومتریک و دبی نشت در سدهای خاکی با استفاده از مدل‌های عددی بر مبنای هوش مصنوعی یکی از اقدامات اساسی در مطالعات طراحی آن‌ها بشمار می‌آید. در این تحقیق با استفاده از مدل‌های محاسبات نرم شامل برنامه‌نویسی وراثتی (GP)، الگوریتم M5 و روش دسته‌بندی گروهی داده‌ها (GMDH) به پیش‌بینی فشار پیزومتریک درون‌هسته و دبی نشت سد خاکی سد شهید کاظمی بوکان پرداخته‌شده است. بدین منظور از اطلاعات ثبت‌شده در 94 ماه اخیر استفاده شد. نتایج حاصل از مدلهای هوشمند مذکور در مراحل آموزش و آزمایش نشان دادند که روشهای بکار گرفته‌شده دارای دقت مناسبی در تخمین دبی نشت و فشار آب پیزومتریک هستند. بهترین عملکرد در تخمین فشار پیزومتریک مربوط به الگوریتم M5 با ضریب تبین (R2) برابر با 0/95 و جذر میانگین مربعات خطا (RMSE) برابر با 0/86 است. مدل GMDH هم با در نظر گرفتن دو واحد (ماه) تأخیر زمانی و خطای ضریب تبین 0/92 و جذر میانگین مربعات خطا 1/541 توانست دبی نشت را نسبت به سایر مدل‌ها ی هوشمند با دقت بهتری مدل‌سازی و پیش‌بینی کند. همچنین از تحقیق حاضر می توان نتیجه گرفت که به‌صورت کلی افزایش تأخیرات زمانی در اطلاعات ورودی مدل‌ها باعث افزایش سطح عملکرد مدل‌های پیشنهادی می‌شود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Projection of seepage and piezometric pressure in earth dams using soft computational models

نویسنده [English]

  • Mohammad Najafzadeh
Department of Water Engineering, Faculty of Civil and Surveying Engineering, Graduate University of Advanced Technology, Kerman
چکیده [English]

Earth dams are always one of the main components of water conservation projects. Nowadays, accurate estimation of piezometric pressure and seepage discharge in earth dams using numerical models and artificial intelligence (AI) approaches is one of the fundamental steps in their design studies. In this research, soft computing models including gene-expression programming (GEP), M5 algorithm and group method of data handling (GMDH) have been used to predict the piezometric pressure in the core and the seepage discharge through the body of Shahid Kazemi Boukan Earth Dam. For this purpose, the information recorded in the last 94 months has been used. The results showed that all of the applied models have permissible level of accuracy in the prediction of seepage discharge and piezometric pressure. The best performance in the piezometric pressure estimation is related to the M5 algorithm with a coefficient of determination (R2) of 0.95 and root mean square error (RMSE) of 0.86. The GMDH by considering the two units (months) delay time and with R2= 0.92 and RMSE=1.541 modeled and predicted the seepage discharge, which was more accurate than other models. In general, increasing the time delay in the input information of models generally increases the performance of proposed models.

کلیدواژه‌ها [English]

  • Seepage discharge
  • Piezometric pressure
  • Gene-expression programming
  • Group method of data handling
  • M5 algorithm
[1]S. Dehdar-behbahani, A. Parsaie, Numerical modeling of flow pattern in dam spillway’s guide wall. Case study:Balaroud dam, Iran, Alexandria Engineering Journal, 55(1) (2016) 467-473.
[2]A. Parsaie, A.H. Haghiabi, Numerical Modeling of Flow Pattern in Spillway Approach Channel, Jordan Journal of Civil Engineering, 12(1) (2018) 1-9.
[3]T. Stephens, Manual on small earth dams: a guide to siting, design and construction, Food and Agriculture Organization of the United Nations (FAO), 2010.
[4]P. Taghvaei, S.F. Mousavi, A. Shahnazari, H. Karami, I. Shoshpash, Experimental and Numerical Modeling of Nano-clay Effect on Seepage Rate in Earth Dams, International Journal of Geosynthetics and Ground Engineering, 5(1) (2019) 1.
[5]K. Reddy, T.B. Chander, U. Bhawsar, Steady-State Seepage Analysis of Embankment Dam using Geo Studio Software, Journal of Advanced Research in Construction & Urban Architecture, 3(1&2) (2018) 16-19.
[6]G. Tayfur, D. Swiatek, A. Wita, P. Singh Vijay, Case Study: Finite Element Method and Artificial Neural Network Models for Flow through Jeziorsko Earthfill Dam in Poland, Journal of Hydraulic Engineering, 131(6) (2005) 431-440.
[7]D. Ersayın, Studying seepage in a body of earth-fill dam by (Artifical Neural Networks) ANNs, İzmir Institute of Technology, 2006.
[8]X.Y. Miao, J.K. Chu, J. Qiao, L.H. Zhang, Predicting seepage of earth dams using neural network and genetic algorithm, in:  Advanced Materials Research, Trans Tech Publ, 2012, pp. 3081-3085.
[9]S.P. Kokaneh, S. Maghsoodian, H. MolaAbasi, A. Kordnaeij, Seepage evaluation of an earth dam using Group Method of Data Handling (GMDH) type neural network: A case study, Scientific Research and Essays, 8(3) (2013) 120-127.
[10]V. Nourani, A. Babakhani, Integration of artificial neural networks with radial basis function interpolation in earthfill dam seepage modeling, Journal of Computing in Civil Engineering, 27(2) (2012) 183-195.
[11]V. Ranković, A. Novaković, N. Grujović, D. Divac, N. Milivojević, Predicting piezometric water level in dams via artificial neural networks, Neural Computing and Applications, 24(5) (2014) 1115-1121.
[12]K. Roushangar, S. Garekhani, F. Alizadeh, Forecasting Daily Seepage Discharge of an Earth Dam Using Wavelet– Mutual Information–Gaussian Process Regression Approaches, Geotechnical and Geological Engineering, 34(5) (2016) 1313-1326.
[13]E. Sharghi, V. Nourani, N. Behfar, Earthfill dam seepage analysis using ensemble artificial intelligence based modeling, Journal of Hydroinformatics, 20(5) (2018) 1071-1084.
[14]A.G. Ivakhnenko, Polynomial Theory of Complex Systems, IEEE Transactions on Systems, Man, and Cybernetics, SMC-1(4) (1971) 364-378.
[15]A. Parsaie, A.H. Haghiabi, Improving Modelling of Discharge Coefficient of Triangular Labyrinth Lateral Weirs Using SVM, GMDH and MARS Techniques, Irrigation and Drainage, 66(4) (2017) 636-654.
[16]M. Masoumi Shahr-Babak, M.J. Khanjani, K. Qaderi, Uplift capacity prediction of suction caisson in clay using a hybrid intelligence method (GMDH-HS), Applied Ocean Research, 59 (2016) 408-416.
[17]J.R. Quinlan, Learning with continuous classes, in:  5th Australian joint conference on artificial intelligence, World Scientific, 1992, pp. 343-348.
[18]Y. Wang, I.H. Witten, Induction of model trees for predicting continuous classes,  (1996).
[19]M.K. Goyal, C.S.P. Ojha, Estimation of Scour Downstream of a Ski-Jump Bucket Using Support Vector and M5 Model Tree, Water Resources Management, 25(9) (2011) 2177-2195.
[20]A. Behnood, V. Behnood, M. Modiri Gharehveran, K.E. Alyamac, Prediction of the compressive strength of normal and high-performance concretes using M5P model tree algorithm, Construction and Building Materials, 142 (2017) 199-207.
[21]J.R. Koza, Genetic Programming: On the Programming of Computers by Means of Natural Selection, Bradford, 1992. [22]A. Parsaie, A.H. Haghiabi, M. Saneie, H. Torabi, Applications of soft computing techniques for prediction of energy dissipation on stepped spillways, Neural Computing and Applications,  (2016).
[23]A. Parsaie, S. Ememgholizadeh, A.H. Haghiabi, A. Moradinejad, Investigation of trap efficiency of retention dams, Water Science and Technology: Water Supply, 18(2) (2017) 450-459.