مطالعه ‌قابلیت اعتماد کنترل فعال ارتعاشات مبتنی بر شناسایی سیستم

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده فنی و مهندسی، دانشگاه محقق اردبیلی، اردبیل، ایران.

چکیده

‌قابلیت‌اعتماد سامانه‌های کنترل ارتعاشات تحت تاثیر ‌عدم‌قطعیت‌های موجود در پارامترهای دینامیکی سازه، مشخصات کنترلر و تحریکات خارجی قرار می‌گیرد. در مواردی که هدف، طرح کنترل برای ‌سازه‌هایی‌ست که مشخصات آن‌ها در اختیار نمی‌باشد، استفاده از روش‌های شناسایی در تخمین پارامترهای دینامیکی و طراحی کنترلر راهگشا است. کنترلر طراحی‌شده بر مبنای شناسایی از طرفی خطای ذاتی مدل‌سازی را به‌همراه دارد و از سویی تحت تاثیر خطای روش‌های شناسایی قرار می‌گیرد. می‌توان از مقایسه عملکرد کنترلر مبتنی بر شناسایی با کنترلر مبتنی بر مدل فرضی، تخمینی از تاثیر دقت شناسایی در کنترل ارتعاشات به‌دست آورد. این رویکرد ضمن صرفه‌جویی در هزینه‌های هوشمندسازی، نقش منفی ‌عدم‌قطعیت‌ها در پارامترهای سازه را کمرنگ نموده و می‌تواند با استخراج مشخصات سازه به طراحی کنترلر بپردازد. در این مطالعه با درنظرگرفتن ‌عدم‌قطعیت‌های موجود در پارامترهای سازه و تحریک خروجی، نخست سیستم کنترل اولیه طراحی شده و در ادامه براساس پاسخ‌های ثبت‌شده، سازه با روش زیرفضای تصادفی شناسایی شده است تا کنترلر دیگری بر مبنای شناسایی طراحی گردد. در نهایت با تعریف تابع خرابی به‌صورت اختلاف بیشینه پاسخ تغییرمکان طبقه‌ی فوقانی سازه برای دو کنترلر، تخمینی از ‌قابلیت‌اعتماد سیستم کنترل به‌دست آمده است. مطابق نتایج درصد موفقیت برای کنترلر مبتنی بر شناسایی نسبت به کنترلر اصلی  99/75 بوده و توزیع‌های آماری برای شاخص‌های عملکرد کنترلر مبتنی بر شناسایی از میانگین پایین‌تر و انحراف‌معیار بالاتری نسبت به کنترلر فرضی برخوردار هستند؛ این امر می‌تواند متاثر از دقت پایین و برآورد بالاتر نسبت‌های میرایی در ‌سازه‌های شناسایی‌‌شده باشد که ‌قابلیت‌اعتماد بالاتری برای کنترلر مبتنی بر شناسایی سبب شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Reliability Study of Identification-based Active Control

نویسندگان [English]

  • Amin Gholizad
  • Mona Shoaei-parchin
Civil Engineering Department Faculty of Engineering University of Mohaghegh Ardabili Ardabil, Iran
چکیده [English]

The reliability of vibration control systems is influenced by uncertainties in dynamic parameters of structure, the characteristics of controller, and external excitations. When designing controllers for structures with unspecified or unavailable specifications, identification methods for estimating dynamic parameters and controller design offer a practical solution. However, controllers based on identification methods are subject to two main sources of error: modeling inaccuracies and identification errors. By comparing the performance of controllers designed using identification methods with those based on assumed models, it is possible to evaluate the impact of identification accuracy on control effectiveness. This approach minimizes the negative effects of uncertainties in structural parameters while reducing the costs associated with intelligentization. In this study, uncertainties considered in structural parameters and external excitations. Initially, a primary control system was designed, and the structure was identified using the stochastic subspace identification based on recorded responses. Subsequently, a secondary controller was designed based on identification. The failure function was defined as maximum difference in displacement response of the upper story of structure between two controllers. Using this metric, the reliability of control system was estimated. The results showed that the identification-based controller achieved a success rate of 99.75% compared to original controller. However, the statistical distributions of the performance indexes for the identification-based controller exhibited a lower mean and higher standard deviation than those of assumed-model-based controller. This improvement is likely influenced by the lower accuracy and higher estimated damping ratios of the identified structures, which contribute to increased reliability of identification-based controller.

کلیدواژه‌ها [English]

  • Stochastic subspace identification
  • Monte Carlo simulation
  • system identification
  • reliability
  • active control
[1] C. Papadimitriou, L. Katafygiotis, S.K. Au, Effects of structural uncertainties on TMD design: A reliability‐based approach, Journal of structural control, 4(1) (1997) 65–88.
[2] H.A. Jensen, J.G. Sepúlveda, On the reliability-based design of structures including passive energy dissipation systems, Structural safety, 34(1) (2012) 390–400.
[3] H.A. Jensen, D. Kusanovic, On the effect of near-field excitations on the reliability-based performance and design of base-isolated structures, Probabilistic Engineering Mechanics, 36 (2014) 28–44.
[4] B. Farahmandazar, A. Hadidi, A. Rafiee, An efficient simulation method for reliability analysis of systems with expensive-to-evaluate performance functions, Structural engineering and mechanics: An international journal, 55(5) (2015) 979–999.
[5] E. Babaeipour, H. Khosravi, Investigation of reliability in eccentrically-braced concrete frame with viscoelastic damper, in:  National Congress Numerical Methods in Civil Engieering 2015, undefined, 2015 (in Persian).
[6] W. You, S. Alexandre, M. Ichchou, Z. Abdel, X. Zhong, Reliability modeling and prediction of passive controlled structures through Random Forest, in:  MATEC Web of Conferences, EDP Sciences, 2018, pp. 01023.
[7] L. Li, M. Fang, G. Chen, D. Yang, Reliability-based stochastic optimal control of frame building under near-fault ground motions, Mechanical Systems and Signal Processing, 163 (2022) 108098.
[8] S.-M. Kim, S.-Y. Ok, J. Song, Multi-scale dynamic system reliability analysis of actively-controlled structures under random stationary ground motions, KSCE Journal of Civil Engineering, 23(3) (2019) 1259–1270.
[9] N. Fathiazar, M. Mohebbi, Optimal design of passive mass damper based on reliability, in:  International Conference on Civil Engineering, Architecture and urban infrastructure, undefined, 2015 (in Persian).
[10] P. Shoaei, R. Karami-Mohammadi, N. Hoseini, Reliability analysis of structures equipped with adjusted liquid dampers considering uncertainty in model specifications and earthquake intensity, in:  2nd National Conference on Applied Researches in Structural Engineering and
Construction Management, undefined, 2016 (in Persian).
[11] R. Debbarma, S. Chakraborty, S.K. Ghosh, Optimum design of tuned liquid column dampers under stochastic earthquake load considering uncertain bounded system parameters, International journal of mechanical sciences, 52(10) (2010) 1385–1393.
[12] A. Khansefid, A. Vaezzadeh, Probabilistic optimization of viscous damper system in nonlinear structure, in:  5th International Conference on Acoustics and Vibration, University of Tehran,
Tehran, Iran, 2015 (in Persian).
[13] Z. Dehnavi, H. Khosravi, Investigation of reliability in steel eccentrically-braced frames with friction damper, in:  The first national conference on sustainable urban development, undefined, 2013 (in Persian).
[14] M. Mohebbi, D. Valinezhad, N. Alesh-Nabidoust, Reliability sensitivity analysis of single passive mass damper parameters, in:  International Conference on Civil Engineering, Architecture and Urban Sustainable Development, undefined, 2013 (in Persian).
[15] H. Shariatmadar, G. Behnam-Rad, Reliability evaluation of active controlled structures using subset simulation method, in:  8th National Congress On Civil Engineering, undefined, 2014 (in Persian).
[16] S. Askari, A. Sirazi-Mamoureh, Reliability of semi-active seismic isolation in near-fault earthquakes, in:  Sixth National Conference on New Technologies in Civil Engineering, Architecture and Urban Planning, undefined, 2019 (in Persian).
[17] S. Pooyan, P. Homami, Seismic reliability analysis of bridges equipped with dampers, in:  2nd Conference on Seismology & Earthquake Engincering, undefined, 2015 (in Persian).
[18] C. Zhang, W. Li, D. Liu, J. Xu, X. Feng, R. Wang, B. Wang, Seismic reliability research of continuous girder bridge considering fault-tolerant semi-active control, Structural Safety, 102 (2023) 102322.
[19] S. Hosseinaei, M.R. Ghasemi, S. Etedali, T.H. Chan, Sensitivity and reliability analyses in to actively controlled structures under earthquake, International Journal of Structural Stability and Dynamics, 22(12) (2022) 2250124.
[20] A. Jalali, H. Shariatmadar, Reliability analysis of controlled structures based on probabilistic active controller, in:  Structures, Elsevier, 2023, pp. 106–116.
[21] R.R. Orszulik, J. Shan, Active vibration control using genetic algorithm-based system identification and positive position feedback, Smart Materials and Structures, 21(5) (2012) 055002.
[22] M. Moradmand, F. Amini, P. Ghaderi, Simultaneous Online Damage Detection and Vibration Control of Structures Using Synchronization and Semi-Active Control, International Journal of Structural Stability and Dynamics,  (2021) 2150038.
[23] S. Azizi, K. Karami, S. Nagarajaiah, Developing a semi-active adjustable stiffness device using integrated damage tracking and adaptive stiffness mechanism, Engineering Structures, 238 (2021) 112036.
[24] S. Naderi, K. Karami, Y. Batmani, Real-time identification of damage in structures based on model-based adaptive identification, in:  12th National Congress of Civil Engineering, 2020 (in Persian).
[25] T. Nestorović, N. Durrani, M. Trajkov, Experimental model identification and vibration control of a smart cantilever beam using piezoelectric actuators and sensors, Journal of Electroceramics, 29 (2012) 42–55.
[26] S. Golestaneh Zadeh, M. Amin Afshar, Seismic control of damaged structure by pole assignment and intermittent wavelet-based identification, Journal of Vibration and Control, 29(3-4) (2023) 528–542.
[27] M. Ebrahimi, E. Nobahar, R.K. Mohammadi, E.N. Farsangi, M. Noori, S. Li, The influence of model and measurement uncertainties on damage detection of experimental structures through recursive algorithms, Reliability Engineering & System Safety, 239 (2023) 109531.
[28] F.Y. Cheng, H. Jiang, K. Lou, Smart structures: innovative systems for seismic response control, CRC press, 2008.
[29] J. Katebi, M. Shoaei-parchin, M. Shariati, N.T. Trung, M. Khorami, Developed comparative analysis of metaheuristic optimization algorithms for optimal active control of structures, Engineering with Computers, 36 (2020) 1539–1558.
[30] D. Skolnik, Y. Lei, E. Yu, J.W. Wallace, Identification, model updating, and response prediction of an instrumented 15-story steel-frame building, Earthquake Spectra, 22(3) (2006) 781–802.
[31] P. Van Overschee, B. De Moor, Continuous-time frequency domain subspace system identification, Signal Processing, 52(2) (1996) 179–194.
[32] P. Van Overschee, B. De Moor, W. Dehandschutter, J. Swevers, A subspace algorithm for the identification of discrete time frequency domain power spectra, Automatica, 33(12) (1997) 2147–2157.
[33] B. Peeters, System identification and damage detection in civil engeneering,  (2000).
[34] M.R. Ashory, Investigation of the accuracy of SSI-COV method in estimation of Modal Parameters: numerical and experimental case studies, Modares Mechanical Engineering, 13(10) (2014) 127–139.
[35] L. Mevel, M. Goursat, M. Basseville, Stochastic subspace-based structural identification and damage detection and localisation—application to the Z24 bridge benchmark, Mechanical Systems and Signal Processing, 17(1) (2003) 143–151.
[36] C. Priori, M. De Angelis, R. Betti, On the selection of user-defined parameters in data-driven stochastic subspace identification, Mechanical Systems and Signal Processing, 100 (2018) 501–523.
[37] L. Shieh, H. Wang, R. Yates, Discrete-continuous model conversion, Applied Mathematical Modelling, 4(6) (1980) 449–455.
[38] B. Koh, S. Nagarajaiah, M. Phan, Reconstructing structural changes in a dynamic system from experimentally identified state-space models, Journal of mechanical science and technology, 22(1) (2008) 103–112.
[39] M. Phan, R. Longman, Extracting mass, stiffness, and damping matrices from identified state-space models, in:  AIAA Guidance, Navigation, and Control Conference and Exhibit, 2004, pp. 5415.
[40] A. Graham, Kronecker Products and Matrix Calculus with Applications, Courier Dover Publications, 1981.
[41] B. Koh, S. Nagarajaiah, M. Phan, Reconstructing structural changes in a dynamic system from experimentally identified state-space models, Journal of mechanical science and technology, 22 (2008) 103–112.
[42] B. Koh, S. Nagarajaiah, M. Phan, Direct identification of structural damage through kronecker product method, Journal of Mechanical Science and Technology, 22(01) (2008) 103–112.
[43] W.K. Gawronski, Advanced structural dynamics and active control of structures, Springer, 2004.
[44] Y. Ohtori, R. Christenson, B. Spencer Jr, S. Dyke, Benchmark control problems for seismically excited nonlinear buildings, Journal of engineering mechanics, 130(4) (2004) 366–385.
[45] A.S. Nowak, K.R. Collins, Reliability of structures, CRC press, 2012.
[46] A. Bathaei, S.M. Zahrai, M. Ramezani, Semi-active seismic control of an 11-DOF building model with TMD+ MR damper using type-1 and-2 fuzzy algorithms, Journal of vibration and control, 24(13) (2018) 2938–2953.