[1] Y. Li, Y. Li, Z. Guo, Q. Xu, Durability of MICP-reinforced calcareous sand in marine environments: Laboratory and field experimental study, Biogeotechnics, 1(2) (2023) 100018.
[2] M. Dagliya, N. Satyam, M. Sharma, A. Garg, Experimental study on mitigating wind erosion of calcareous desert sand using spray method for microbially induced calcium carbonate precipitation, Journal of Rock Mechanics and Geotechnical Engineering, 14(5) (2022) 1556-1567.
[3] Z. Wang, X. Zhao, X. Chen, P. Cao, L. Cao, W. Chen, Mechanical properties and constitutive model of calcareous sand strengthened by MICP, Journal of Marine Science and Engineering, 11(4) (2023) 819.
[4] C. Lv, W.-Q. Li, C.-S. Tang, C. Zhu, X.-H. Pan, X. Zhang, B. Shi, Characterization and quantification of calcite distribution in MICP-treated sand using μ-XRF image processing technique, Acta Geotechnica, 19(1) (2024) 115-129.
[5] J. Liu, X.a. Li, X. Liu, W. Dong, G. Li, Mechanical Properties of Eolian Sand Solidified by Microbially Induced Calcium Carbonate Precipitation (MICP), Geomicrobiology Journal, 40(7) (2023) 688-698.
[6] M. Kanwal, R.A. Khushnood, F. Adnan, A.G. Wattoo, A. Jalil, Assessment of the MICP potential and corrosion inhibition of steel bars by biofilm forming bacteria in corrosive environment, Cement and Concrete Composites, 137 (2023) 104937.
[7] A. Kumar, H.-W. Song, S. Mishra, W. Zhang, Y.-L. Zhang, Q.-R. Zhang, Z.-G. Yu, Application of microbial-induced carbonate precipitation (MICP) techniques to remove heavy metal in the natural environment: A critical review, Chemosphere, 318 (2023) 137894.
[8] A. Zamani, B.M. Montoya, Permeability reduction due to microbial induced calcite precipitation in sand, in: Geo-Chicago 2016, 2016, pp. 94-103.
[9] Y. Xiao, H. Deng, J. Li, Biomineralization of coral sand by Bacillus thuringiensis isolated from a travertine cave, Scientific Reports, 13(1) (2023) 8687.
[10] H. Akoğuz, S. Çelik, Ö. Barış, The effects of different sources of calcium in improvement of soils by microbially induced calcite precipitation (MICP), Sigma Journal of Engineering and Natural Sciences, 37(3) (2019) 953-965.
[11] F. Chen, Z. Xu, Discontinuous finite volume element method of two-dimensional unsaturated soil water movement problem, Advances in Difference Equations, 2019 (2019) 1-15.
[12] G. Arampatzis, C. Tzimopoulos, M. Sakellariou‐Makrantonaki, S. Yannopoulos, Estimation of unsaturated flow in layered soils with the finite control volume method, Irrigation and Drainage: The journal of the International Commission on Irrigation and Drainage, 50(4) (2001) 349-358.
[13] F. Li, G. Hu, T. Abdeljawad, M. Abbas, A finite point algorithm for soil water-salt movement equation, Advances in Difference Equations, 2021(1) (2021) 179.
[14] D.K. Mawlood, K.N. Adnan, Comparison of the water movement by Richard and Darcy.
[15] A. Ghobadian, M. Sharifipour, R. Ghobadian, Two-dimensional simulation of water movement in soil using finite volume method with emphasis on non-same depth subsurface drains , Jornal of Structural and Construction Engineering(JSCE), 10(10) (2023) 170-193. (In Persian)
[16] A. Shafiee, R. Dabiri, F. Askari, Dynamic properties of Firoozkooh sand-silt mixtures, Journal of Seismology and Earthquake Engineering, 19(4) (2017) 273-284.
[17] M. Mohseninia, H. Salehzadeh, Enhancing strength parameters of Firoozkooh sandy soil improved with Persian herbal gum, Amirkabir Journal of Civil Engineering, 55(6) (2023) 1123-1136.
[18] R. Imam, A. Azizi, R. Zandian, Factors affecting sand behavior in constant deviatoric stress loading, in: GeoHalifax: 62nd Canadian Geotechnical Conference & 10th Joint CGS/IAH-CNC Groundwater Conference, Halifax, NS, Canada, September 20-24, 2009, Canadian Geotechnical Society, 2009, pp. 95-102.
[19] F. Meyer, S. Bang, S. Min, L. Stetler, S. Bang, Microbiologically-induced soil stabilization: application of Sporosarcina pasteurii for fugitive dust control, in: Geo-frontiers 2011: advances in geotechnical engineering, 2011, pp. 4002-4011.
[20] G.D. Okwadha, J. Li, Optimum conditions for microbial carbonate precipitation, Chemosphere, 81(9) (2010) 1143-1148.
[21] M. Maleki, S. Ebrahimi, F. Asadzadeh, M. Emami Tabrizi, Performance of microbial-induced carbonate precipitation on wind erosion control of sandy soil, International journal of environmental science and technology, 13 (2016) 937-944.
[22] V.S. Whiffin, L.A. Van Paassen, M.P. Harkes, Microbial carbonate precipitation as a soil improvement technique, Geomicrobiology Journal, 24(5) (2007) 417-423.
[23] S.C. Bang, S.H. Min, S.S. Bang, Application of microbiologically induced soil stabilization technique for dust suppression, International Journal of Geo-Engineering, 3(2) (2011) 27-37.
[24] M.T. Van Genuchten, A closed‐form equation for predicting the hydraulic conductivity of unsaturated soils, Soil science society of America journal, 44(5) (1980) 892-898.
[25] F.J. Leij, W.B. Russell, S.M. Lesch, Closed‐form expressions for water retention and conductivity data, Groundwater, 35(5) (1997) 848-858.
[26] D.G. Fredlund, A. Xing, M. Fredlund, S. Barbour, The relationship of the unsaturated soil shear strength to the soil-water characteristic curve, Canadian geotechnical journal, 33(3) (1996) 440-448.
[27] H.K. Versteeg, An introduction to computational fluid dynamics the finite volume method, 2/E, Pearson Education India, 2007.
[28] K. Feng, B. Montoya, Drained shear strength of MICP sand at varying cementation levels, in: IFCEE 2015, 2015, pp. 2242-2251.