[1] O.C. Zienkiewicz, J.Z. Zhu, A simple error estimator and adaptive procedure for practical engineerng analysis, in, 1987, pp. 337-357.
[2] L.Y. Li, P. Bettess, J.W. Bull, T. Bond, I. Applegarth, Theoretical formulations for adaptive finite element computations, Communications in Numerical Methods in Engineering, 11(10) (1995) 857-868.
[3] J. Grandy, Conservative remapping and region overlays by intersecting arbitrary polyhedra, Journal of Computational Physics, 148(2) (1999) 433-466.
[4] X. Jiao, M.T. Heath, Common‐refinement‐based data transfer between non‐matching meshes in multiphysics simulations, International Journal for Numerical Methods in Engineering, 61(14) (2004) 2402-2427.
[5] T. Arbogast, L.C. Cowsar, M.F. Wheeler, I. Yotov, Mixed finite element methods on nonmatching multiblock grids, SIAM Journal on Numerical Analysis, 37(4) (2000) 1295-1315.
[6] M.M. Rashid, Material state remapping in computational solid mechanics, International Journal for Numerical Methods in Engineering, 55 (2002) 431-450.
[7] M. Ortiz, J.J. Quigley IV, Adaptive mesh refinement in strain localization problems, Computer Methods in Applied Mechanics and Engineering, 90 (1991) 781-804.
[8] G.T. Camacho, M. Ortiz, Computational modelling of impact damage in brittle materials, International Journal of solids and structures, 33(20-22) (1996) 2899-2938.
[9] N.-S. Lee, K.-J. Bathe, Error indicators and adaptive remeshing in large deformation finite element analysis, Finite Elements in Analysis and Design, 16(2) (1994) 99-139.
[10] B. Boroomand, O.C. Zienkiewicz, Recovery procedures in error estimation and adaptivity. Part II: Adaptivity in nonlinear problems of elasto-plasticity behaviour, Computer Methods in Applied Mechanics and Engineering, 176 (1999) 127-146.
[11] M. Kitamura, H. Gu, H. Nobukawa, A study of applying the superconvergent patch recovery (SPR) method to large deformation problem, Journal of the Society of Naval Architects of Japan, 2000(187) (2000) 201-208.
[12] X. Tang, T. Sato, Adaptive mesh refinement and error estimate for 3-D seismic analysis of liquefiable soil considering large deformation, Journal of natural disaster science, 26(1) (2004) 37-48.
[13] H. Gu, Z. Zong, K.C. Hung, A modified superconvergent patch recovery method and its application to large deformation problems, Finite Elements in Analysis and Design, 40 (2004) 665-687.
[14] A. Khoei, S. Gharehbaghi, Modelling of localized plastic deformation via the adaptive mesh refinement, International Journal of Nonlinear Sciences and Numerical Simulation, 4(1) (2003) 31-46.
[15] S.A. Gharehbaghi, A.R. Khoei, Three-dimensional superconvergent patch recovery method and its application to data transferring in small-strain plasticity, Computational Mechanics, 41 (2008) 293-312.
[16] A.R. Khoei, S.A. Gharehbaghi, Three-dimensional data transfer operators in large plasticity deformations using modified-SPR technique, Applied Mathematical Modelling, 33 (2009) 3269-3285.
[17] A.R. Khoei, S.A. Gharehbaghi, A.R. Tabarraie, A. Riahi, Error estimation, adaptivity and data transfer in enriched plasticity continua to analysis of shear band localization, Applied Mathematical Modelling, 31 (2007) 983-1000.
[18] A.R. Khoei, S.A. Gharehbaghi, A.R. Azami, A.R. Tabarraie, SUT-DAM: An integrated software environment for multi-disciplinary geotechnical engineering, in, Elsevier, 2006, pp. 728-753.
[19] J. Peddie, The History of the GPU - New Developments, in, Springer International Publishing, 2023, pp. 1-410.
[20] K. Proudfoot, W.R. Mark, S. Tzvetkov, P. Hanrahan, A real-time procedural shading system for programmable graphics hardware, in, Association for Computing Machinery, 2001, pp. 159-170.
[21] M. Kronbichler, K. Ljungkvist, Multigrid for Matrix-Free High-Order Finite Element Computations on Graphics Processors, in, ACM PUB27 New York, NY, USA 2019.
[22] Y. Zhang, X. Yan, X. Ren, S. Wang, D. Wu, B. Bai, Parallel implementation and branch optimization of EBE-FEM based on CUDA platform, in, 2020, pp. 595-600.
[23] J. Zhang, D. Shen, GPU-based implementation of finite element method for elasticity using CUDA, in, IEEE Computer Society, 2014, pp. 1003-1008.
[24] S.A. Gharehbaghi, A.R. Khoei, Three-dimensional superconvergent patch recovery method and its application to data transferring in small-strain plasticity, in, Springer Verlag, 2008, pp. 293-312.
[25] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, , The finite element method [electronic resource] : its basis and fundamentals / O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu., in, Amsterdam ; Boston : Elsevier Butterworth-Heinemann, 2005., 2005.
[26] A.R. Khoei, A.R. Tabarraie, S.A. Gharehbaghi, H-adaptive mesh refinement for shear band localization in elasto-plasticity Cosserat continuum, in, Elsevier, 2005, pp. 253-286.
[27] A.R. Khoei, S.A. Gharehbaghi, The superconvergence patch recovery technique and data transfer operators in 3D plasticity problems, in, Elsevier, 2007, pp. 630-648.
[28] A.R. Khoei, S.A. Gharehbaghi, A.R. Tabarraie, A. Riahi, Error estimation, adaptivity and data transfer in enriched plasticity continua to analysis of shear band localization, in, Elsevier, 2007, pp. 983-1000.
[29] A.R. Khoei, S.A. Gharehbaghi, Three-dimensional data transfer operators in large plasticity deformations using modified-SPR technique, in, Elsevier, 2009, pp. 3269-3285.
[30] B. Boroomand, O.C. Zienkiewicz, Recovery procedures in error estimation and adaptivity. Part II: Adaptivity in nonlinear problems of elasto-plasticity behaviour, in, North-Holland, 1999, pp. 127-146.
[31] O.C. Zienkiewicz, B. Boroomand, J.Z. Zhu, Recovery procedures in error estimation and adaptivity Part I: Adaptivity in linear problems, Computer Methods in Applied Mechanics and Engineering, 176(1-4) (1999) 111-125.
[32] J. Barlow, Optimal stress locations in finite element models, in, John Wiley & Sons, Ltd, 1976, pp. 243-251.
[33] O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery (SPR) and adaptive finite element refinement, in, 1992, pp. 207-224.
[34] O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 2: Error estimates and adaptivity, in, John Wiley & Sons, Ltd, 1992, pp. 1365-1382.
[35] O.C. Zienkiewicz, J.Z. Zhu, The superconvergent patch recovery and a posteriori error estimates. Part 1: The recovery technique, in, John Wiley & Sons, Ltd, 1992, pp. 1331-1364.
[36] O.C. Zienkiewicz, M. Huang, M. Pastor, Localization problems in plasticity using finite elements with adaptive remeshing, in, John Wiley & Sons, Ltd, 1995, pp. 127-148.
[37] O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu, The finite element method [electronic resource] : its basis and fundamentals / O.C. Zienkiewicz, R.L. Taylor, J.Z. Zhu., in, Amsterdam ; Boston : Elsevier Butterworth-Heinemann, 2005., 2005.
[38] A.R. Khoei, Computational plasticity in powder forming processes, in, Elsevier, 2005, pp. 449.
[39] C. Geuzaine, J.F. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, in, John Wiley & Sons, Ltd, 2009, pp. 1309-1331.
[40] M. Cervera, N. Lafontaine, R. Rossi, M. Chiumenti, Explicit mixed strain–displacement finite elements for compressible and quasi-incompressible elasticity and plasticity, in, Springer Verlag, 2016, pp. 511-532.