تئوری یکپارچه پذیرش و استفاده از فناوری جهت پیش‌بینی تمایل به استفاده از پهپادها در حمل‌ونقل کالا در ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

دانشکده مهندسی عمران، دانشگاه صنعتی خواجه نصیرالدین طوسی، تهران، ایران

چکیده

پهپاد کالارسان پهپادی است که برای حمل‌ونقل کالا استفاده می‌شود. این تکنولوژی یکی از ایده‌های نوظهور در زمینه ارسال کالاست که در سالیان اخیر مورد توجه بسیاری از خدمات‌دهندگان، فعالان حوزه بازاریابی و برنامه‌ریزان لجستیکی قرار گرفته است. هدف از انجام این پژوهش، تعیین فاکتورهای تاثیرگذار بر تمایل کاربران به استفاده از پهپاد کالارسان به عنوان روشی جدید برای ارسال کالا در آینده است. بدین منظور، با استفاده از نسخه دوم و جدیدترِ تئوری یکپارچه پذیرش و استفاده از فناوری به عنوان مدل پایه و اضافه کردن متغیرهای جمعیت‌شناختی (از جمله سن، جنس، میزان تحصیلات، درآمد ماهیانه خانوار و میزان آشنایی با پهپاد کالارسان) به عنوان متغیرهای کنترل‌کننده، مدل پژوهش پیشنهاد گردید. با طراحی و توزیع یک پرسشنامه اینترنتی، اطلاعات حاصل از 357 خریدار ایرانی برای اجرای مدل معادلات ساختاری با رویکرد حداقل مربعات جزئی گردآوری شد. نتایج حاصل از مدلسازی نشان می‌دهد که تمام متغیرهای تئوری یکپارچه به جز انتظار عملکرد (به عبارت دیگر، متغیرهایی همچون انتظار تلاش، شرایط تسهیل‌کننده و انگیزه درونی) ، تاثیر مثبت و معناداری بر تمایل خریداران به استفاده از پهپاد کالارسان دارند. علاوه بر این، درآمد ماهیانه خانوار و میزان آشنایی با پهپاد کالارسان نیز به طور مثبتی بر پذیرش پهپاد کالارسان توسط کاربران تاثیرگذارند. درنهایت، نتایج تئوری و کاربردی حاصل از این پژوهش توضیح داده شده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Applying UTAUT2 to Understanding Online Buyers’ Intention to Adopt Delivery Drones in Iran

نویسندگان [English]

  • Ali Edrisi
  • Houmaan Ganjipour
چکیده [English]

Drone delivery is an emergent idea for last-mile delivery that has received the attention of many service providers, marketing activists, and logistic planners. This study is aimed at determining the factors influential in the acceptance of delivery drones as a new way for last-mile delivery in the future. In this regard, the study model was proposed using the unified theory of acceptance and use of technology (UTAUT2) as the base model and adding socio-demographic variables (age, education, gender, monthly household income, and drone delivery familiarity) as control variables to it. The information about 357 Iranian buyers was collected for the partial least square structural equation modeling (PLS-SEM) by designing an online questionnaire. The results indicated that all variables of UTAUT2, except for performance expectancy (effort expectancy, facilitating conditions, and hedonic motivation), had a positive and significant effect on the intention of buyers to use delivery drones. In addition, the effect of monthly household income and drone delivery familiarity was also positive and significant. In the end, the theoretical and applied results of the study are explained.

کلیدواژه‌ها [English]

  • Delivery Drone
  • Last-mile Delivery
  • UTAUT2
  • Adoption Behavior
  • PLS-SEM
[1] J. Hwang, D. Kim, J.J. Kim, How to Form Behavioral Intentions in the Field of Drone Food Delivery Services: The Moderating Role of the COVID-19 Outbreak, International Journal of Environmental Research and Public Health, 17(23) (2020) 9117.
[2] D. Bamburry, Drones: Designed for product delivery, Design Management Review, 26(1) (2015) 40-48.
[3] W. Yoo, E. Yu, J. Jung, Drone delivery: Factors affecting the public’s attitude and intention to adopt, Telematics and Informatics, 35(6) (2018) 1687-1700.
[4] P.-J. Wu, K.-C. Lin, Unstructured big data analytics for retrieving e-commerce logistics knowledge, Telematics and Informatics, 35(1) (2018) 237-244.
[5] F. Manjoo, Think Amazon’s drone delivery idea is a gimmick? Think again, in, The New York Times, 2016.
[6] H.L. Lee, Y. Chen, B. Gillai, S. Rammohan, Technological disruption and innovation in last-mile delivery, Value Chain Innovation Initiative,  (2016).
[7] M.M. Doole, J. Ellerbroek, J.M. Hoekstra, Drone delivery: Urban airspace traffic density estimation, 8th SESAR Innovation Days, 2018,  (2018).
[8] M. Joerss, J. Schröder, F. Neuhaus, C. Klink, F. Mann, Parcel delivery: The future of last mile, McKinsey & Company,  (2016) 1-32.
[9] IRNA, Post drones are designed by Iranian elites, in, 2019.
[10] J. Chamata, Factors delaying the adoption of civil drones: a primitive framework, The International Technology Management Review, 6(4) (2017) 125-132.
[11] A. Zwickle, H.B. Farber, J.A. Hamm, Comparing public concern and support for drone regulation to the current legal framework, Behavioral sciences & the law, 37(1) (2019) 109-124.
[12] F. Schenkelberg, How reliable does a delivery drone have to be?, in:  2016 annual reliability and maintainability symposium (RAMS), IEEE, 2016, pp. 1-5.
[13] C. Lidynia, R. Philipsen, M. Ziefle, Droning on about drones—acceptance of and perceived barriers to drones in civil usage contexts, in:  Advances in human factors in robots and unmanned systems, Springer, 2017, pp. 317-329.
[14] C. Lidynia, R. Philipsen, M. Ziefle, The sky’s (not) the limit-influence of expertise and privacy disposition on the use of multicopters, in, Springer, 2017, pp. 270-281.
[15] C. Letterman, D. Schanzer, W. Pitts, K. Ladd, J. Holloway, S. Mitchell, S.C. Kaydos-Daniels, Unmanned aircraft and the human element: Public perceptions and first responder concerns, in:  Technical Report, Citeseer, 2013.
[16] B. Aydin, Public acceptance of drones: Knowledge, attitudes, and practice, Technology in society, 59 (2019) 101180.
[17] Z.B. Ramadan, M.F. Farah, M. Mrad, An adapted TPB approach to consumers’ acceptance of service-delivery drones, Technology Analysis & Strategic Management, 29(7) (2017) 817-828.
[18] J. Chamata, J. Winterton, A conceptual framework for the acceptance of drones, The International Technology Management Review, 7(1) (2018) 34-46.
[19] C. Mittendorf, D. Franzmann, U. Ostermann, Why Would Customers Engage in Drone Deliveries?, in:  Twenty-third Americas Conference on Information Systems, Boston, 2017.
[20] R.A. Clothier, D.A. Greer, D.G. Greer, A.M. Mehta, Risk perception and the public acceptance of drones, Risk analysis, 35(6) (2015) 1167-1183.
[21] R. Khan, S. Tausif, A. Javed Malik, Consumer acceptance of delivery drones in urban areas, International Journal of Consumer Studies, 43(1) (2019) 87-101.
[22] X. Zhu, Segmenting the public’s risk beliefs about drone delivery: a belief system approach, Telematics and Informatics, 40 (2019) 27-40.
[23] J. Hwang, J.-S. Lee, H. Kim, Perceived innovativeness of drone food delivery services and its impacts on attitude and behavioral intentions: The moderating role of gender and age, International Journal of Hospitality Management, 81 (2019) 94-103.
[24] J.J. Kim, J. Hwang, Merging the norm activation model and the theory of planned behavior in the context of drone food delivery services: Does the level of product knowledge really matter?, Journal of Hospitality and Tourism Management, 42 (2020) 1-11.
[25] J.Y. Choe, J.J. Kim, J. Hwang, Innovative marketing strategies for the successful construction of drone food delivery services: Merging TAM with TPB, Journal of Travel & Tourism Marketing, 38(1) (2021) 16-30.
[26] J. Hwang, S.-B. Cho, W. Kim, Consequences of psychological benefits of using eco-friendly services in the context of drone food delivery services, Journal of Travel & Tourism Marketing, 36(7) (2019) 835-846.
[27] J. Hwang, I. Kim, M.A. Gulzar, Understanding the eco-friendly role of drone food delivery services: Deepening the theory of planned behavior, Sustainability, 12(4) (2020) 1440.
[28] J. Hwang, J.J. Kim, K.-W. Lee, Investigating consumer innovativeness in the context of drone food delivery services: Its impact on attitude and behavioral intentions, Technological Forecasting and Social Change, 163 (2021) 120433.
[29] A. Valencia-Arias, P.A. Rodríguez-Correa, J.C. Patiño-Vanegas, M. Benjumea-Arias, J. De La Cruz-Vargas, G. Moreno-López, Factors associated with the adoption of drones for product delivery in the context of the COVID-19 pandemic in Medellin, Colombia, Drones, 6(9) (2022) 225.
[30] M.K. Leong, K.Y. Koay, Towards a unified model of consumers’ intentions to use drone food delivery services, International Journal of Hospitality Management, 113 (2023) 103539.
[31] L.Y. Koh, J.Y. Lee, X. Wang, K.F. Yuen, Urban drone adoption: Addressing technological, privacy and task–technology fit concerns, Technology in Society, 72 (2023) 102203.
[32] V. Venkatesh, M.G. Morris, G.B. Davis, F.D. Davis, User acceptance of information technology: Toward a unified view, MIS quarterly,  (2003) 425-478.
[33] V. Venkatesh, J.Y.L. Thong, X. Xu, Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology, MIS quarterly,  (2012) 157-178.
[34] G.W.-H. Tan, K.-B. Ooi, Gender and age: Do they really moderate mobile tourism shopping behavior?, Telematics and Informatics, 35(6) (2018) 1617-1642.
[35] T. Oliveira, M. Thomas, G. Baptista, F. Campos, Mobile payment: Understanding the determinants of customer adoption and intention to recommend the technology, Computers in Human Behavior, 61 (2016) 404-414.
[36] R. Likert, A technique for the measurement of attitudes, Archives of psychology, 20 (1932) 5-55.
[37] R.W. Brislin, Back-translation for cross-cultural research, Journal of cross-cultural psychology, 1(3) (1970) 185-216.
[38] J.S. Armstrong, T.S. Overton, Estimating nonresponse bias in mail surveys, Journal of marketing research, 14(3) (1977) 396-402.
[39] J.F. Hair, W.C. Black, B.J. Babin, R.E. Anderson, Multivariate data analysis, Pearson Prentice Hall, New Jersey, 2010.
[40] W.W. Chin, The partial least squares approach to structural equation modeling, Modern methods for business research, 295(2) (1998) 295-336.
[41] J.F. Hair, C.M. Ringle, M. Sarstedt, PLS-SEM: Indeed a silver bullet, Journal of Marketing theory and Practice, 19(2) (2011) 139-152.
[42] J.F. Hair, M. Sarstedt, C.M. Ringle, J.A. Mena, An assessment of the use of partial least squares structural equation modeling in marketing research, Journal of the academy of marketing science, 40(3) (2012) 414-433.
[43] J.C. Anderson, D.W. Gerbing, Structural equation modeling in practice: A review and recommended two-step approach, Psychological bulletin, 103(3) (1988) 411.
[44] C.M. Ringle, S. Wende, J.-M. Becker, SmartPLS 3, Boenningstedt: SmartPLS GmbH,  (2015).
[45] W. Reinartz, M. Haenlein, J. Henseler, An empirical comparison of the efficacy of covariance-based and variance-based SEM, International Journal of research in Marketing, 26(4) (2009) 332-344.
[46] C. Fornell, D.F. Larcker, Evaluating structural equation models with unobservable variables and measurement error, Journal of marketing research, 18(1) (1981) 39-50.
[47] K.S. Taber, The use of Cronbach’s alpha when developing and reporting research instruments in science education, Research in Science Education, 48(6) (2018) 1273-1296.
[48] R.B. Kline, Principles and practice of structural equation modeling, Guilford publications, 2015.
[49] J. Henseler, C.M. Ringle, M. Sarstedt, A new criterion for assessing discriminant validity in variance-based structural equation modeling, Journal of the academy of marketing science, 43(1) (2015) 115-135.
[50] M.K. Lindell, D.J. Whitney, Accounting for common method variance in cross-sectional research designs, Journal of applied psychology, 86(1) (2001) 114.
[51] N. Kock, Common method bias in PLS-SEM: A full collinearity assessment approach, International Journal of e-Collaboration (ijec), 11(4) (2015) 1-10.
[52] P. Ramírez-Correa, F.J. Rondán-Cataluña, J. Arenas-Gaitán, F. Martín-Velicia, Analysing the acceptation of online games in mobile devices: An application of UTAUT2, Journal of Retailing and Consumer Services, 50 (2019) 85-93.
[53] Y.U.E. Guo, S.J. Barnes, Explaining purchasing behavior within World of Warcraft, Journal of Computer Information Systems, 52(3) (2012) 18-30.
[54] I. Panagiotopoulos, G. Dimitrakopoulos, An empirical investigation on consumers’ intentions towards autonomous driving, Transportation research part C: emerging technologies, 95 (2018) 773-784.
[55] J.K. Choi, Y.G. Ji, Investigating the importance of trust on adopting an autonomous vehicle, International Journal of Human-Computer Interaction, 31(10) (2015) 692-702.
[56] M.M. Rahman, M.F. Lesch, W.J. Horrey, L. Strawderman, Assessing the utility of TAM, TPB, and UTAUT for advanced driver assistance systems, Accident Analysis & Prevention, 108 (2017) 361-373.
[57] R. Madigan, T. Louw, M. Wilbrink, A. Schieben, N. Merat, What influences the decision to use automated public transport? Using UTAUT to understand public acceptance of automated road transport systems, Transportation research part F: traffic psychology and behaviour, 50 (2017) 55-64.
[58] S. Kapser, M. Abdelrahman, Acceptance of autonomous delivery vehicles for last-mile delivery in Germany–Extending UTAUT2 with risk perceptions, Transportation Research Part C: Emerging Technologies, 111 (2020) 210-225.
[59] S. Kapser, M. Abdelrahman, T. Bernecker, Autonomous delivery vehicles to fight the spread of Covid-19–How do men and women differ in their acceptance?, Transportation Research Part A: Policy and Practice,  (2021).
[60] J. Jun, H. Park, I. Cho, Study on initial adoption of advanced driver assistance system: integrated model of PMT and UTAUT 2, Total Quality Management & Business Excellence, 30(sup1) (2019) S83-S97.
[61] P. Hartmann, V. Apaolaza-Ibanez, Beyond savanna: An evolutionary and environmental psychology approach to behavioral effects of nature scenery in green advertising, Journal of Environmental Psychology, 30(1) (2010) 119-128.
[62] S. Muralidharan, C. La Ferle, Y. Sung, Are we a product of our environment? Assessing culturally congruent Green advertising appeals, novelty, and environmental concern in India and the USA, Asian Journal of Communication, 27(4) (2017) 396-414.
[63] K.B. Wright, Researching Internet-based populations: Advantages and disadvantages of online survey research, online questionnaire authoring software packages, and web survey services, Journal of computer-mediated communication, 10(3) (2005) JCMC1034.